UNCLASSIFIED ## AD NUMBER AD829893 LIMITATION CHANGES TO: Approved for public release; distribution is unlimited. FROM: Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; JAN 1968. Other requests shall be referred to Naval Ship Research Development Center, Annapolis, MD. This document contains export-controlled technical data. **AUTHORITY** USNSRDC, ltr 6 Mar 1972 # RESISTANCE TESTS OF A SYSTEMATIC SERIES OF PARTIALLY AIR SUPPORTED VEHICLES by Lawrence Benen and Joel B. Bloom January 1968 Report 2512 ### TABLE OF CONTENTS | | Page | |--------------------------------|------| | ABSTRACT | 1 | | ADMINISTRATIVE INFORMATION | 1 | | INTRODUCTION | 1 | | DESCRIPTION OF MODELS | 4 | | TEST SETUP AND INSTRUMENTATION | 5 | | TEST PROGRAM | 6 | | RESULTS AND DISCUSSION | 7 | | FLOW AND STABILITY | 7 | | QUANTITATIVE RESULTS | 8 | | COMPARISON OF MOLLLS | 10 | | CONCLUDING REMARKS | 10 | | REFERENCES | 65 | ## LIST OF FIGURES | | 1'age | |---|-------| | Figure 1 - Typical Hull Lines for Series | 12 | | Figure 2 - Plan View of Bottom Lines Excluding Side Keels | 13 | | Figure 3 - Views of Model 4982 | 14 | | Figure 4 - Model 4984 Underway Supported by Air Chamber | 15 | | Figure 5 - Effect of Air Flow on Resistance | 16 | | Figure 6 - Lift-Resistance Ratio (L/DE) as a Function of | | | Area Coefficient $(A/\nabla^{2/3})$ for Various Static | | | Trims and Froude Numbers | 17 | | | | | | | | | | | | | | LIST OF TARLES | | | | Page | | Table 1 - Experimental Results | 20 | ## NCIATION | A | Area of bottom in feet ² | |------------------|---| | АНР | Air horsepower required to support craft, (see | | | Equation (1)) | | b | Beam, excluding side keels, in feet | | $D_{\mathbf{E}}$ | Total effective resistance in pounds (see Equation (4)) | | EHP | Effective horsepower, RV/550 | | F | Froude number based on constant area, $V/\sqrt{gA^{1/2}}$ | | g | Acceleration due to gravity, feet per second ² | | L | Lift, equals displacement in pounds (gross weight) | | 1 | Length of hull bottom in feet | | R | Resistance in pounds | | THP | Fotal horsepower (EHP + AHP) | | V | Speed in feet/second | | δτ | Change of trim in degrees, positive bow up | | ∇ | Volume of displacement in feet ³ , L/ρg | | ρ | Water density, pound-second ² /feet ⁴ | #### **ABSTRACT** Four partial air support (Hydrokeel) vehicles of different length-beam ratio have been tested for resistance at a number of loads, speeds, and trim conditions. All data are presented in nondimensional form for use in comparing hull forms. The tests showed that the use of an air support system significantly improves the performance of this configuration. Lift-drag ratios greater than ten were obtained for a wide range of conditions. Wetted boundaries were not discernible, nor could planing lift be deduced, due to the complexity of the flow. #### ADMINISTRATIVE INFORMATION This study was authorized by Bureau of Ships letter F0140202, Serial 449-6 of 23 March 1964. Funding was under S-F014 02 02, Task 2065. Program was under cognizance of BUSHIPS Code 449. #### INTRODUCTION Early attempts at air lubrication were unsuccessful because of difficulty in maintaining a stable layer of air between the ship and the water. The advent of the air cushion concept (i.e., use of a nearly static cushion of air below the undersurface of the vehicle) marked the beginning of investigations of possible efficient means of reducing skin friction. At the present time various methods have been tried to seal the periphery of the air cushion vehicle. The basic aim in each case is to retain a rather large cushion of air underneath. The Ground Effect Machine "GEM" uses an air curtain as a seal. The "Captured Air Bubble Vehicle" has immersed side keels and a forward and aft "ski" (adjustable movable planing surface) for end seals. The "Hydrokeel" vehicle has immersed side keels, a flexible flap for a forward seal, and the flat after portion of the bottom for a rear seal. The various configurations differ in the degree of complexity of the seals, the amount of drag incurred by the seals, and the amount of air leakage allowed. Mechanical seals are likely to reduce air leakage at the expense of larger propulsive requirements to overcome the drag of the seals. However, for high density configurations requiring a large pressure under the vehicle, mechanical seals appear to be advantageous. Also, at small Froude number, such as would be associated with very large vehicles or low speed (e.g., near "hovering") it has been generally accepted that mechanical seals are more efficient than an air curtain. Operation at low speed is an important consideration since for many Navy applications the ability to operate at high speed must be combined with the ability to cruise efficiently at low and intermediate speeds. The hydrokeel configuration is of particular interest because of the simplicity of its mechanical seals. Studies have been made and are continuing to be made of the Ground Effect Machine and Captured Air Bubble Vehicle. Little information is presently available, however, with regard to the Hydrokeel "chicle. To obtain data necessary for an evaluation of the concept, the Bureau of Ships requested the David Taylor Model Basin to test a stematic series of hydrokeel boats. The testing of a systematic series of hull forms serves a number of useful purposes: (1) the data obtained can be used to predict the performance of projected new designs, (2) the results indicate the effects on performance of changes in the design variables, (3) the results indicate the values of parameters which are optimum, and (4) the results indicate the practicability of the configurations by comparing efficiency with other designs. The hydrokeel is a radical departure from conventional design and is inherently complex because it involves both hydrodynamic and aerodynamic flows. The number of variables open to investigation is therefore large and it was necessary, in order to keep the investigation within practical limits, to test very simple models and limit the measurements to basic quantities. Based on previous planing data, there was reason to suspect that the influence of length, beam, displacement, and static trim (LCG location) would be of primary importance. As a result of preliminary tests it was found necessary also to include as a variable the mass flow of air required to maintain the air cushion. The parent configuration is the simplest possible, a rectangular box. Four models having length-to-beam ratios of 2.5, 4.0, 5.5, and 7.0 were tested. Results are presented in the form of curves of lift-drag ratios versus area coefficients at specific Froude numbers for optimum air flow. #### DESCRIPTION OF MODELS Lines and principal characteristics of the models are shown in Figure 1. The models were simple rectangular shells, made of 1/4 in. plywood. Air ducting and plenum chambers were located on each model. The air was supplied by two mechanically interconnected centrifugal fans driven by two 8.5 hp electric motors. The air discharged into two noncommunicating plenum chambers. It then passed through the ducts on either side of the craft and exited under the hull just aft of the bow flaps. Hinged flexible flaps at the bow, made of 3/32 in. thick rubber, and two deep keels at the sides provided a seal to prevent gross loss of air, thus reducing the blower requirements. The seal at the stern was provided by the after portion of the bottom planing in the water. A deep center keel separated the port and starboard air systems to provide transverse stability. The four models are shown in planview in Figure 2. It can be seen the values of length-beam ratio tested in the series are 2.5, 4.0, 5.5, and 7.0. The extreme models are outside the generally accepted range of boat proportions but one of the purposes of this systematic series is to investigate unfamiliar ground. The bottom area for the four balls is the same. Essentially the four models were derived by adjusting the station spacing and the beam to give the different length-beam ratios desired. The model with the length-beam ratio of 4.0 had proportions similar to those of an experimental LCVP(K), a high speed landing craft. On each model, scales were marked along the keels and on one side of the transom for reading solid-water wetted lengths. Photographs of one of the models are shown in Figure 3. #### TEST SETUP AND INSTRUMENTATION Langley Tank 1, in which the models were towed is described in Reference 1*. Each model was towed on a thrust line which was parallel with the hull bottom and 18.5 in. above it, and an automatic towing system maintained the shaft line by raising and lowering the towing arm to follow the model. The model was free to pitch, heave, and roll. It was restrained in yaw by slotted guides which engaged vertical posts fixed to the model near the bow and stern. The resistance was measured with a differential reluctance modular force gage. Rise and trim data were obtained by use of a pulley and string mechanism that made possible the measurement of rise ^{*}References are listed on page 65. at the bow (positive upward) and drop at the stern (positive downward) relative to the static position. The trim change from the static position was computed from the bow rise and stern drop. Air flow was determined by means of a Hastings heated thermopile air meter fitted in each duct. Static tubes in each duct were used to measure the static pressure. A velocity profile of the flow in the ducts was taken prior to testing. The same relative distribution of air in the ductwork was found to exist for all the models. All data were recorded on an oscillograph and on a digital data recording system. Motion and still pictures were taken. #### TEST PROGRAM The present series was planned so as to explore in a systematic way
the effects of a wide variation of length-beam ratios, hull trims, and loads. The bottom area of the series of hulls is the same; therefore, if the hulls are compared on the basis of equal $A/\nabla^{2/3}$, the comparison will be on the basis of equal values of hull area and hull volume. The values of $A/\nabla^{2/3}$ planned were 13.0, 7.5, and 5.0; however, with Model 4985, it was found necessary to omit $A/\nabla^{2/3} = 13.0$ due to spray problems, and to include $A/\nabla^{2/3} = 6.4$ to properly define trends. The static trim conditions were -0.5, 0, 0.5, 1.0, and 1.5 deg, positive bow up, referred to the hull bottom. The speed range was from 5 fps to 35 fps (F equals about 0.3 up to F equals 2.4). After a few preliminary runs, it was found that the quantity of air pumped under the hull had an important effect on resistance. Various air mass flow rates were then added to the test program to define this effect. #### RESULTS AND DISCUSSION #### FLOW AND STABILITY In general, the models were stable throughout the ranges of loads and speeds tested, the only exception being the hull with length-beam ratio of 7.0 at $A/\nabla^{2/3} = 7.5$ which exhibited a slight vertical instability at F above 2.0. Underwater photographs of the models showed that the air support chamber contained a mixture of air and water. It was impossible to see through the mixture to determine wetted boundaries. The models were apparently partially supported by planing on this mixture, but the amount of planing lift was not deducible. It was impossible also to determine the wetted area of the center keel and inside surfaces of the side keel. A leakage of air at the front seals generated a fine mist (see Figure 4) which engulfed the models. Tests of the model with length-beam ratio of 7.0 at light loads were prevented by the danger of excessive spray wetting the towing carriage electrical equipment. Without air blowing, large quantities of spray were generated at the bow and forefoot of the side keels at high speeds, limiting tests at these conditions as well. The models retained the air sufficiently well to be considered air-cushion vehicles over the range of static trims from -0.5 to 1.5 deg. At 2.0 deg and above, however, the forefoot of the side keel was apparently insufficiently deep to maintain an adequate seal and the blowers had little effect. At -1.0 deg the buoyant and dynamic forces of the water seated the flap against the air duct exit, preventing the flow of air. The models failed to retain the air in the hovering condition. They would usually list to one side and air would escape from under the side keel. Also, model-generated disturbances were reflected back from the tank walls causing the model to roll. #### QUANTITATIVE RESULTS Values of speed, resistance, air flow, air pressure, bow rise, stern drop, and trim change from the tests of the four models are given in Table 1. The air drag of the towing gear has been subtracted from the measured resistance values. Figure 5 shows the effect of air support on resistance for a typical model condition. It can be seen that air flow has a marked influence on the performance of a hull of this design. It should be remembered that such a hull with three deep keels is significantly poorer without air support than a conventional hull. An air flow rate which was considered optimum was determined for each trim, load, and speed condition. The optimum air flow rate was chosen as that beyond which the reduction in resistance was judged to be insufficient to warrant the additional power requirements. Figure 5 indicates the points chosen as optimum for a number of model speeds at a specific load and trim condition. Although the method of determining the optimum was admittedly somewhat arbitrary, in most instances (particularly the intermediate speeds) the sharpness of the bend in the curves limited the choice to a narrow range. In order to give a realistic indication of the total power requirements and facilitate comparisons, the resistance equivalent of the power required to support the weight of the craft is calculated for the optimum air flow. This value, combined with the measured hull resistance, determines the total effective resistance which is called $D_{\rm E}$. The equations used to obtain $D_{\rm E}$ are as follows: AHP = Air Velocity (fpm) × Area Duct (sq ft) × $$\frac{144}{33,000}$$ (1) $$EHP = \frac{RV}{550} \tag{2}$$ $$THP = AHP + EHP \tag{3}$$ $$D_{E} = \frac{550 \text{ THP}}{V} \tag{4}$$ Values of L/D_E versus A/\(\frac{2}{3}\) corresponding to optimum air flow conditions as determined from faired data such as that presented in Figure 5, are presented in Figure 6 for various Froude numbers and static trims. It is notable that a lift-drag ratio of ten is exceeded for wide ranges of the test conditions. In view of the simplicity of the configurations tested, further development and refinement of the design could be expected to result in even larger lift-drag ratios and wider ranges of operating conditions. #### COMPARISON OF MODELS Using Figure 6, comparisons may be made of the four models at various angles of static trim and at specific Froude numbers. At Froude numbers of 1.4 or less and heavy loads the model with the highest length-beam ratio has quite a low drag (high L/D_E). However, the data do not cover the full range of loads because of excessive spray at light loads as previously explained. As the speed increases, for Froude numbers of 1.6 or more and trim between -0.5 and 0.5, the smallest length-beam ratio shows superior performance as is to be expected because of the superior efficiency of a high aspect ratio dynamic lifting surface and smaller skin friction of the shorter keels. #### CONCLUDING REMARKS The use of an air support system significantly improves the performance of this configuration. Lift-drag ratios greater than ten were obtained for a wide range of conditions. High lift-drag ratios were obtained with large loads at low speeds with the longest model (1/b = 7.0) and at high speeds with the shortest model (1/b = 2.5). The air support chamber contained a mixture of air and water when planing and wetted boundaries were not discernible, nor could planing lift be deduced due to the complexity of the flow. The models were trim-sensitive and could only be tested through a trim range of -0.5 through 1.5 deg. The models were stable except for the zero speed condition and a slight instability of the longest model over a narrow operating range. Figure 1 - Typical Hull Lines for Series Figure 2 - Plan View of Bottom Lines Excluding Side Keels Profile Bow Stern Bottom Figure 3 - Views of Model 4982 Figure 4 - Model 4984 Underway Supported by Air Chamber Speed = 33.1 fpt, Displacement = 1456 lbs, Static Trim = 0 deg AIR FLOW IN FEET PER MINUTE Figure 5 - Effect of Air Flow on Resistance Figure 6 - Lift-Resistance Ratio (L/D_E) as a Function of Area Coefficient (A/ $V^{2/3}$) for and Froude Numbers Figure 6a - F = 0.8, 1.0, 1.2 17 io (L/D_E) as a Function of Area Coefficient $(A/V^{2/3})$ for Various Static Trims and Froude Numbers Figure 6a - F = 0.8, 1.0, 1.2 Figure 6b - F = 1.4, 1.6, 1.8 Figure 6b - F = 1.4, 1.6, 1.8 Figure 6c - F = 2.0, 2.2, 2.4 A. 19 Figure 6 Continued Figure 6c - F = 2.0, 2.2, 2.4 TABLE 1 Experimental Results | Air
Velocity,
Starboard
fpm | ty = 1,605* | 2000
2200
1600
2000
2000
2000
0 250
1000
600
600
600
600 | |--|---|---| | Pressure, A.
Starboard V.
in, water S' | 982, LENGTH/BEAM RATIO = 2.5 336 lbs, Water Density = 1,969* Kinematic Viscosity = 1,605* | 1.97
2.04
1.91
1.96
1.96
2.02
Xinematic Viscosity
0
1.84
1.80
1.80
1.80
1.80 | | Air
Velocity,
Port
fpm |) = 2.5
/ = 1.969* Kin | | | Pressure,
Port
in. water | MODEL 4982, LENGTH/BEAM RATIO = 2.5 ment = 336 lbs, Water Density = 1.90 | 2.21 200 2.27 220 2.27 220 2.14 160 2.14 160 2.14 200 3.6 lbs, Water Density = 1.969 3.6 lbs, Water Density = 1.969 | | Stern
Drop
in. | 2, LENG | 38, Wate | | Bow
Rise
in. | | nt # 336 1) | | Sr
deg | Displac | 4.23
4.47
3.67
3.73
5.78
3.78
-0.07
2.87
3.27
3.27
3.27
3.27
3.27
4.30 | | Resistance
1bs | MODEL 4
im = -0.5 deg, Displacement = | н | | Speed | Static Trim | 15.3
20.4
20.4
20.4
25.7
25.1
5.1
5.1
5.2
10.0
10.0 | *Water Density - Lb. Sec.2/Ft.4 Kinematic Viscosity - Ft.2/Sec. X 10⁵ TABLE 1 - Continued | Air
Velocity,
Starboard
fpm | 800 | 1200 | 1000 | 800 | 0 | 4 00 | 1400 | 2200 | 1800 | 1800 | 0 | 200 | 200 | 800 | 1200 | 1600 | 0 | 200 | 006 | 1600 | 1800 | 200 | 1400 | 1200 | 1700 | 2000 | |--------------------------------------|---------------------|------|------|------|------|-----------------|------|------|------|------|----------|------|------|------|------|------|------|-------------------|------|------|------|------|------|------|------|------| | Pressure,
Starboard
in, water | 1.90 | 1.90 | 1.91 | 1.86 | 0.58 | 1.72 | 1.81 | 1.84 | 1.86 | 1.83 | 0 | 0,40 | 1,78 | 1.82 | 1.78 | 1.76 | 0.02 | 0 , 60 | 1.78 | 1.78 | • | • | 1.79 | 1.76 | 1.85 | 1.77 | | Air
Velocity,
Port
fpm | 009 | 1100 | 308 | 200 | 0 | 300 | 1100 | 2100 | 1700 | 1600 | 0 | 100 | 350 | 009 | 1100 | 1500 | 0 | 100 | 800 | 1600 | 1700 | 300 | 1300 | 1000 | 1600 | 1900 | | Pressure,
Port
in, water | 1.91 | 1.94 | 1.93 | 1,93 | 0.58 | 1.68 | 1,92 | 1,94 | 1.93 | 1.90 | 0 | 0.45 | 1.78 | 1.88 | 1.87 | 1.89 | ±0.0 | 94.0 | 1.88 | 1.86 | 1.85 | 98.0 | 1.88 | 1.81 | 1.94 | 1.85 | | Stern
Drop
in. |

 | ! | ! | | ! | ! | \ | | 1 | ! | 1 1 1 | !!! | !!! |
 | !!!! | |
 1 | | | ! | !!! | ! | | !!! | | | Bow
Rise
in. | - | ! | - | ! | ! | ! | : | | ! | - | !!! | ! | ! | | - | | | !!! | | ! | ! | ! | ! | ! | | - | | 8r
deg | | | | ψ) | 9 | 3,15 | .5 | φ. | 9 | 0 | H | 2 | .5 | 6 | 0 | ٦. | 6 | 8 | | Φ, | 6 | 6 | | Š | 9. | 7 | | Resistance
lbs | اہ | 6 | 0 | | m | 39.3 | m | m | e, | | 0 | ~ | | 6 | | | 26. | 6 | 6 | | | | 'n | | 6. | | | Speed | | | | | | 15.2 | TABLE 1 - Continued | ംപ്ര | | | | |--------------------------------------|--|--|---------------------------| | Air
Velocity,
Starboard
fpm | 1700
2200
2400
1500 | 500
1000
1200
75
700
1000
1500
1800 | 250
800 | | Pressure,
Starboard
in, water | 1.74 1700
1.74 2200
1.72 2400
1.69 1500 | 1.62
1.66
1.66
1.66
1.66
1.68 | 1.74
1.58 | | Air
Velocity,
Port
fpm | 1600
2100
2400
1200 | 400
800
900
1100
25
150
200
700
1000
1200 | 100
200 | | Pressure,
Port
in, water | 1.85
1.80
1.76 | 1.65
1.65
1.65
1.75
1.82
1.82
1.82
1.82 | 1.68
1.82 | | Stern
Drop
in. | | |
 1
 1
 1 | | Bow
Rise
in. | | | | | δτ
deg | 3.62
3.55
4.30
3.22 | 3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3. | | | Resistance
1bs | 47.8
56.4
55.8
60.9 | 155
195
196
196
196
196
196
196
196
196
196
196 | . v. c. | | Speed
fps | 30°0
34°9
34°9
35°0 | 100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
10 | | TABLE 1 - Continued | ু ত | , | 1.606 | |--------------------------------------|---|--| | Air
Velocity,
Starboard
fpm | 1200
1600
1600
1600
2900
1200
1400
1600
1600
2000
2400 | | | Pressure,
Starboard
in. water | 11.53
11.56
11.58
11.58
11.58
11.59
11.59
11.59 | Kinematic Viscosity = 1.40 400 1.48 600 0 0 1.38 200 1.40 1.00 1.000 1.50 1.50 | | Air
Velocity,
Port
fpm | 900
1100
1100
1700
1700
1100
1100
1600
600
1400
1600
1600
160 | 200
400
0
150
900
1100
1800 | | Pressure,
Port
in. water | 1.86
1.86
1.78
1.78
1.77
1.77
1.67
1.66 | lbs, Water Density 1.36 1.36 1.36 1.35 1.48 1.50 1.50 | | Stern
Drop
in. | | | | Bow
Rise
in, | | ent = 336 | | δτ
deg | 3.58
3.52
3.52
3.52
3.53
3.53
3.53
3.53
3.53 | 3.55 - 3.55 - 3.55 - 3.55 - 3.55 - 3.67 - 3.83 - 3.83 - 3.83 | | Resistance
lbs | 32.1
32.1
40.0
40.0
60.0
60.0
60.0
60.0
60.0
60.0 | Trim = 1.0 deg, 32.4
32.6
60.5
32.2
31.9
31.8 | | Speed
fps | 2002
2003
2003
2003
2003
2003
2003
2003 | Static Tr. 15.0
15.0
15.1
15.1
15.3
15.3 | TABLE 1 - Continued | | 90 | |--------------------------------------
--| | Air
Velocity,
Starboard
fpm | 700
1100
1600
1600
1800
1300
1500
150
200
200
200
200
200
200
200
150
150
200
200
200
200
150 | | Pressure,
Starboard
in, water | 1.34 700 1.16 1100 1.22 1600 1.14 900 1.14 1800 1.32 1300 1.32 1500 3.43 150 3.46 75 4.33 300 4.00 900 4.00 900 3.91 400 9.81 2000 9.81 2000 9.81 2000 9.81 2000 9.81 2000 9.81 2000 9.81 2000 9.81 2000 9.81 2000 9.81 2000 9.81 2000 9.81 2000 9.81 2000 | | Air
Velocity,
Port
fpm | 600
1500
1000
1500
1500
1500
1500
150
1000
1800
200
125
0 | | Pressure,
Fort
in. water | 1.66
1.71
1.71
1.74
1.76
1.48
1.48
3.45
3.46
4.38
4.38
4.38
4.2
3.69
9.42
2.50 | | Stern
Drop
in. | 0 t t t t m m m m m m m m m m m m m m m | | Bow
Rise
in. | ement = 784
-0.5
3.0
2.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0 | | 8t
deg | Displace
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0. | | Resistance
lbs | 36.0
37.0
49.3
45.2
45.2
45.2
52.9
33.8
33.8
96.4
89.3
140.6
85.5
85.3
142.9 | | Speed
fps | 20.2
20.3
20.3
25.2
25.2
30.0
30.0
5.0
10.1
10.1
15.0
15.1
15.1
15.2 | TABLE 1 - Continued | ., Air
d Velocity,
r Starboard
fpm | 1000
1400
1400
1400
1800
1800
1100
1100 | |---|--| | Pressure,
Starboard
in. water | 108222222222222222222222222222222222222 | | Air
Velocity,
Port
fpm | 1100
2500
1200
1200
1200
1200
1300
1500
1500
1500
1600 | | Fressure,
Port
in, water | 88040000000000000000000000000000000000 | | Stern
Drop
in. | | | Bow
Rise
in. | 10.00
11.00
10.00
10.00
10.00
10.00
10.00
10.00 | | δτ
deg | 8444680000 10444444444444600000000000000000000 | | Resistance
lbs | 51.2
645.2
71.2
71.2
73.2
75.2
86.3
85.3
85.3
81.3 | | Speed | 20.00
20.00
20.00
20.00
20.00
20.00
30.00
30.00 | TABLE 1 - Continued | l i | | |--------------------------------------
--| | Air
Velocity,
Starboard
fpm | 1ty = 1.633
0 700
400
15
600
300
1200
400
1200
125
600
600
600
600
125
600
125
600
125
125
1200
1200
1200
125
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200 | | Pressure,
Starboard
in, water | Kinematic Viscosity 3.62 3.62 3.59 3.59 3.78 3.78 3.78 3.74 3.77 3.77 4.14 5.34 | | Air
Velocity,
Port
fym | 1.969 Kiner
600
300
300
100
1000
1000
1000
300
1000
1000
1000
1000
1000
1000
1000
1000 | | Pressure,
Port
in, water | Water Denatty = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | Stern
Drop
in. | 284 1bs Water
55 55 55 55 55 55 55 55 55 55 55 55 55 | | Bow
Rise
in. | # | | δτ
deg | Displacement 2.013 2.78 2.78 2.64 1.01 5.15 5.15 5.15 6.65 6.55 6.29 6.29 | | Resistance
1bs | im = 0 deg. 23.7 33.7 31.6 33.7 31.6 33.2 143.3 77.1 77.1 77.1 77.1 77.8 78.9 88.9 88.9 88.1 88.1 88.1 88.1 88.1 8 | | Speed | State | TABLE 1 - Continued | İ | | |--------------------------------------|--| | Air
Velocity,
Starboard
fpm | 200
200
2000
2000
2000
1500
1500
1500
1100
11 | | Pressure,
Starboard
in, water | 5 | | Air
Velocity,
Port
fpm | 150
1800
1800
1800
200
800
1400
1900
1900
1000
1000
1600
1600
1600
16 | | Pressure,
Port
in. water | 3.55
3.77 3.30
3.77 3.30
3.77 3.30
3.77 3.30
3.77 4.00
3.77 4.40
3.57 4.40
3.57 4.40 | | Stern
Drop
in. | ww 10 1444444444444444444444444444444444 | | Bow
Kise
in. | 8 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | δτ
deg | 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | | Resistance
lbs | 92.2
122.9
68.1
131.8
72.8
72.8
65.7
71.3
77.3
77.3
77.3
77.3
77.3
77.3
77 | | Speed
fps | 15.4
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20 | TABLE 1 - Continued | Air
Velocity,
Starboard
fpm | osity = 1.561 | 0 | 100 | > c | 0 000 | 3000 | DST . | 1800 | 2250 | 350 | 500 | 300 | 300 | 2000 | 1600 | 1600 | 2500 | 300 | 800 | 250 | 0 | 1600 | 009 | 1400 | 1100 | |--------------------------------------|---------------------|-----|------------|---------------|----------|------------|-----------|------|------|-------|------|----------|------|------|------|------|------------|------|------|------|------|------|------------------|------|------| | Pressure,
Starboard
in, water | Kinematic Viscosity | | 4.28 | - | D. 24 | 70°0 | | 3,59 | 3.58 | 3.45 | 2.70 | 3,55 | 3,45 | 4.77 | 4.07 | 3.57 | 3.23 | 3.74 | 2.89 | 3.45 | 0.01 | 4°69 | 3.62 | 4,13 | 3.64 | | Air
Velocíty,
Port
fpm | - 1.969 K | 0 | 20 | 5 (| 0 0 | 2500 | OOT | 1000 | 2000 | 20 | 100 | 3 | 009 | 1500 | 1000 | 1000 | 3500 | 150 | 650 | 150 | 0 | 1000 | 200 | 800 | 1100 | | Pressure,
Port
in, water | Water Density | | 3,13 | - |) | 3.74 | 2.95
 | 4.15 | 3.73 | -3,33 | 2.70 | 3.40 | 3.62 | 3.78 | 3.65 | 3,65 | 3,69 | 3.72 | 3.69 | 3.35 | 0.01 | 3.76 | 3,58 | 3.66 | 3,58 | | Stern
Drop
in. | 784 lbs, Wate | 0 | 1.0
0.1 | m. 0 | . Z | 1.5 | 2.5
.5 | 2.0 | F.8 | 2.5 | 2.5 | !! | | 2,0 | 2,5 | 9,5 | 10.1 | 2.5 | 2,5 | | | • | • | • | • | | Bow
Rise
in. | " | 1.0 | 2.0 | ا
د
د | J.3 | ញ : | ÷ | 0.6 | 0.6 | | 5.0 | !! | 7.0 | 9.0 | 8.5 | 2.9 | 2.8 | E•6 | -0.5 | -0.5 | 7.0 | 10.0 | 6.0 | • | 6.3 | | 8r
deg | . Displacement | 5. | 1.69 | ٦. | 7. | ď. | 5 | ٠, | ું. | s. | | ! | 9 | 2 | 5 | ۲. | ≠ . | 6. | 0 | • | 7 | 7 | 6 | 7 | 5.97 | | Resistance
lbs | Trim = 0.5 deg, | 0 | 33.0 | m i | | œ 1 | , | , | 6. | 2 | 2 | 0 | 7 | æ | 8 | æ | ö | 0 | 5 | m. | m | | ` - ' | • | . m | | Speed | Static Tr | 6°# | 5.0 | .n | 6°6 | 10.0 | 10.0 | 10.1 | 10.1 | 10.1 | 10.1 | 10.2 | 10.2 | 10.2 | 10,2 | 15.0 | 15.0 | 15,1 | 15,1 | 15.1 | 15.2 | 15.2 | 15.2 | 15.3 | 15.3 | | 1 | | | |---|--------------------------------------
---| | | Air
Velocity,
Starboard
fpm | 2400
1500
1100
2500
2500
2500
2500
2500
1700
1500
1500
1500 | | | Pressure,
Starboard
in, water | 0 m m t t m m m m m m m m m t t m m o m m m m | | | Air
Velocity,
Port
fpm | 250
2000
2000
2000
2600
2600
150
1600
1600
1600
1000
1000
1000
10 | | | Pressure,
Port
in. water | 03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50
03.50 | | | Stern
Drop
in. | 04m00000000000000000000000000000000000 | | | Bow
Rise
in. | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | | 8r
deg | 0.000440004444444444444444444444444444 | | | Resistance
lbs | 86.6
112.1
718.1
718.1
69.7
73.9
73.9
68.1
729.4
78.9
78.9 | | | Speed | 115.3
115.3
115.3
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0 | TABLE 1 - Continued | Air
Velocity,
Starboard
fpm |
2000
1800
1800
1000
1200
1200
150
1600
1600
1600
1600
1600
1800
1800
180 | |--------------------------------------|--| | Pressure,
Starboard
in, water | 88989999999999999999999999999999999999 | | Air
Velocity,
Port
fpm | 1600
2200
2200
2200
3000
1000
3500
3500
1600
1200
1200
2800
2800
1800 | | Pressure,
Port
in. water | 8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8. | | Stern
Drop
in. | ๚๛๛๘๚๚๛๚๛๚
๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛
๛๛๛๛๛๛๛๛ | | Bow
Rise
in. | | | ðr
deg | ###################################### | | Resistance
lbs | 70.2
71.7
80.4
78.8
67.9
151.5
80.2
72.7
76.2
80.6
80.7
68.3
77.1 | | Speed | 22222222222222222222222222222222222222 | TABLE 1 - Continued | | 61 | |--------------------------------------|--| | Air
Velocity,
Starboard
fpm | #500
3800
1800
1800
1500
300
1500
500
1500
800
1000
800
1900
1900 | | Pressure,
Starboard
in. water | #.58
5.02
#.58
3.02
3.21
3.05
3.05
3.06
3.06
3.42
800
3.42
800
4.54
4.00
9.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0. | | Air
Velocity,
Port
fpm | 4000
3200
1600
1.969
1200
300
1000
600
600
600
600
1000
1000
1100
1800
18 | | Pressure,
Port
in. water | 3.88
3.54
3.54
2.92
2.32
2.32
2.75
2.70
3.12
3.14
3.10
2.68
3.15
3.26 | | Stern
Drop
in. | | | Bow
Kise
in. | 10.0
10.0
10.0
10.0
10.0
9.0
10.0
10.0
9.0
9.0
9.0
9.0 | | 81
deg | 1,05
1,05
1,05
1,05
1,05
1,05
1,05
1,05 | | Resistance
lbs | 77.2
77.5
87.9
87.9
97.9
132.6
124.7
124.7
124.7
124.7
124.7
124.7
124.7
124.7
124.7
124.7
131.2
89.5
83.9
83.6
83.6
83.6 | | Speed | 35.1
37.3
37.3
37.3
37.3
15.3
15.3
15.3
15.3
20.1
20.1
20.2
20.2
20.2
20.3
20.1
30.1 | TABLE 1 - Continued | - 'P | ᇋ |--------------------------------------|-----------------------|--------------|----------|-------------|----------|------------|------------|-----|---------|---------|------|------|------|-----|--------------|------|------|------|-------------|-------------|------|------|------|------|-------| | Air
Velocity,
Starboard
fpm | ity = 1,661 | 800 | 900 | 0 0 | 000 | 0 00. | Tann | 0 | 200 | 150 | 200 | 2000 | 300 | 0 | 2100 | 1000 | 1400 | 800 | 1600 | 2200 | 1900 | 800 | 1800 | 0 | 1800 | | Pressure,
Starboard
in, water | Kinematic Viscosity = | 6.38 | ÷.0 | ם מ | † ° | - | 22.0 | 0 | 6.20 | 5.92 | ±8,9 | 6.87 | 5.18 | 0 | ₩ 6•9 | 6.85 | 5.46 | 7,30 | 08*9 | • | 5.74 | • | • | 0 | 3.58 | | Air
Velocity,
Port
fpm | ŀ | 700 | 20 | 7
7 | T/2 | ٠
ر | ŌOTT | 0 | 20 | 20 | 300 | 1900 | 200 | ఆ | 2000 | 700 | 1300 | 200 | 1500 | 2100 | 1700 | 009 | 1300 | 0 | 1700 | | Pressure,
Port
in. water | Water Density = 1.969 | де. 9 | 90°9 | > | 0°28 | o ; | 6.84 | 0 | 5,86 | 5.72 | 6.70 | 6.86 | 5.08 | 0 | 6.92 | 6.85 | 5.74 | 7.18 | 08.9 | 6.25 | 5.97 | 1.68 | 6.37 | 0 | 3.84 | | Stern
Drop
in. | lbs, Water | 1.8 | ٦.
د. | m. 0 | ָ
מי | O. | ٠ <u>.</u> | 0.7 | o.
± | o.
± | t,5 | 6.5 | 6.3 | 8.9 | 6.3 | 5.8 | 7.0 | 6.8 | 6. 8 | 6. 8 | | 0.3 | • | • | • | | Bow
Rise
in. | nt = 1457 | 0.4 | ហ | 0.1- | ι.
20 | -1.0 | . 0 | 2.0 | 7.5 | 7.0 | 6.0 | 14.0 | 11.3 | 8.6 | | 13.8 | 13.0 | 12,3 | 14.8 | 13.8 | 13.8 | 15.0 | 14,5 | 14.8 | 15.3 | | δτ
deg | Displacemer | 6 | 2,52 | 0,1 | | ð. | ŀ | ٥. | æ | r. | 7 | ۲, | 7 | ~ | אַ | 1 | 6 | 1 | 0.7 | 7 | 0.2 | 7.6 | 7 | មា | 7.79 | | Resistance
lbs | Trim = 0 deg, D | | 100 | | | | • | | | | | | | | | | | | | | | | | | 227.9 | | Speed | Static Tr | | | • | | | | | | | • | | |) 1 | | | • | , (| | • | . 4 | , , | | • | 20.0 | TABLE 1 - Continued | ı | .1 | |--------------------------------------
---| | Air
Velocity,
Starboard
fpm | 1.69 1000
6.64 2200
1.63 2300
1.63 2300
1.63 2400
2.22 2600
2.22 2600
0.20 0
5.90 2000
6.20 1500
6.20 1500
6.20 1500
6.20 0
7.53 500
7.53 200
7.53 200
7.53 200
7.31 600 | | Pressure,
Starboard
in, water | 1.69
6.64
5.32
1.63
3.50
7.41
7.53
0.20
6.20
6.20
6.20
6.20
6.20
6.20
7.53
7.86
7.31 | | Air
Velocity,
Port
fpm | 900
1100
2200
1100
2200
1300
1300
1900
200
1900
700
700
700
500
1000 | | Pressure,
Port
in, water | 1.86
6.70
5.45
1.91
1.92
1.72
4.96
4.96
4.07
7.05
6.30
6.30
6.30
6.30
6.27
7.52
7.10 | | Stern
Drop
in. | 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | Bow
Rise
in. | 15.0
14.0
14.0
13.3
13.3
13.0
13.0
13.0
13.0
13.0
12.5 | | δτ
deg | 7.64 15 7.64 15 7.64 15 5.94 14 5.99 11 5.81 13 6.29 14 6.29 14 6.29 18 6.29 18 6.29 18 7.9 13 7.64 16 | | Resistance
lbs | 249.1
173.4
208.3
208.3
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.6
217.7
217.6
217.6
217.7
217.6
217.6
217.7
217.6
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7
217.7 | | Speed | 20.0
20.2
25.0
25.0
25.0
25.1
25.1
25.1
25.1
25.1
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30 | TABLE 1 - Continued | Speed | Resistance
lbs | δτ
deg | Bow
Rise
in. | Stern
Drop
in. | Pressure,
Port
in, water | Air
Velocity,
Port
fpm | Pressure,
Starboard
in, water | Air
Velocity,
Starboard
fpm |
---|--|--|--|----------------------|--|--|---|--| | 255.3
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0
200.0 | 222.2
212.5
222.2
222.2
222.2
223.3
223.3
260.5
260.5
260.5
260.6
260.6
260.6
260.6 | 0.63
4.53
8.37
9.01
7.09
7.09
7.13
7.13
7.13
7.13
6.23
4.35 | 13.0
14.0
14.0
14.0
14.0
15.0
13.3
13.3 | |
6.53
6.33
6.32
6.33
6.33
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53
6.53 | 1500
1500
1500
1500
1200
1200
1100
1400
1400
1800
1200
1800 | 10.38
6.18
6.18
6.18
6.54
6.54
10.20
10.96
10.96
10.35
10.35
10.35
10.35
10.35
10.35
10.35 | 1400
1600
1600
1800
1200
1200
1500
1600
1600
1600
1900
2300
1400 | | • | | | | | | | 1 | | TABLE 1 - Continued | IT. | # 1,661 | | |--------------------------------------|---|--| | Air
Velocity,
Starboard
fpm | | 1500
1800
1800
1800
1800 | | Pressure,
Starboard
in, water | 6.96 140
0.25
6.68 120
6.40 80
7.02 200
3.46 40
6.78 180
6.79 200
6.74 240
7.46 140 | 6.30
6.18
6.18
6.94
6.59
7.68
6.59 | | Air
Velocity,
Port
fpm | 1400
1200
1200
800
150
2000
2400
350
1000 | 0
100
500
800
800
0
75
1600
1400
1600 | | Pressure,
Port
in, water | 6.44
0.20
6.32
6.32
0.53
6.39
3.40
7.00
5.07
5.44 | 5.86
6.09
6.18
6.94
6.30
7.09
6.85 | | Stern
Drop
in. | 1bs. W | | | Bow
Rise
in. |

 | | | δτ
deg | 4.53
4.02
4.02
4.58
4.58
4.53
4.53
3.73
3.78
3.50
Displacem | 0-
0-22
0-22
0-22
0-22
0-22
0-22
0-23
0-23 | | Resistance
lbs | 161.0
253.4
163.8
166.8
245.9
151.8
216.6
161.0
156.5
157.2
261.6
181.0 deg, I | 38.9
63.8
63.8
64.5
64.5
240.4
246.7
246.9
246.9 | | Speed
fps | 29.5
29.5
29.7
29.7
29.7
34.6
34.6
35.3
36.5
17 | | TABLE 1 - Continued | ļ |---|--------------------------------------|------------------|---|---|---|---------|-------------|-------------|---|-----------|-------------|--------|---|-------------|---|---------|----------------------------|-------------|---|---|--------|-------------------|---|---| | | Air
Velocity,
Starboard
fpm | 909 | 0 | 2500 | 1.200 | 2000 | 3200 | 3000 | 2300 | 2000 | 1600 | 1800 | 2000 | 2200 | 1100 | 1400 | 200 | 1700 | O | 300 | 2400 | 2800 | 1860 | 2200 | | | Pressure,
Starboard
in. water | 8h*9 | 0 | 6.89 | 7.78 | 6.47 | 2.38 | 2,58 | 5.18 | 3.57 | 2.03 | 2.42 | 3.26 | 99.9 | 7.72 | 6,13 | 5.67 | 6.24 | 0.18 | 1.00 | 6.38 | 6.63 | 6.36 | ħħ•9 | | | Air
Velocity,
Port
fpm | 300 | 0 | 2200 | 1000 | 1800 | 3200 | 3000 | 2300 | 1800 | 1400 | 1800 | 2000 | 2100 | 1100 | 1200 | 200 | 1500 | 0 | 250 | 2200 | 2800 | 1800 | 2200 | | | Pressure,
Port
in. water | 6.33 | 0 | 6.52 | ₩9 | 6,45 | 2,56 | 2.84 | 2.00 | 4.23 | 2,22 | 2,13 | 2.41 | 68*9 | 6.80 | 6.37 | 5,58 | 6.52 | 0.12 | 96.0 | 7.00 | 6.82 | 6,30 | • | Stern
Drop
in. |
 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | 1 ! | 1 1 1 | 1 | !
!
! | !
!
! | !!! | 1 ! ! | 1 1 | 1 1 | 1 1 1 | 1 1 1 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | 1 | 1 1 1 | 1 !!!! | 1 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | !!! | 1 1 1 | !!! | 1 !!!! | !!!! | | | Bow Stern
Rise Drop
in. in. |]
]
]
] | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 1 | 1 1 1 1 | | 1 1 1 1 1 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | 1 1 1 1 1 | 1 1 1 1 1 1 | | 1 | 1 1 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1
1
1
1
1
1 | 1 1 1 1 1 1 | 1 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | | 1 1 1 1 1 1 1 1 1 | 1 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | | | | 99 | .27 | 80. | .93 | .08 | .13 | 13 | .27 | | .32 | .20 | 84. | - 30 | .13 | . 23 | . 13 " | • 30 | 56* | 20 | 30 | . 55 | 54 | . 55 | | | Bow
Rise
in. | 8 65 | 6 8.27 | 80.8 | 8.93 | 80.8 6. | 9 7.13 | 1 7.13 | .1 5.27 | .2 5.32 | 5.32 | 8 5.20 | 5 5 48 | h.30 | .8 4.13 | .1 4.23 | ,2 4,13 " | .2 4.30 | - 3.95 | 2 4.07 | 3 4,30 | 3,55 | - 3,45 | 3,55 | TABLE 1 - Continued | lty, | 1,173 | | 1.173 | | |--------------------------------------|-----------------------------|-------|---------------------|--| | Air
Velocity,
Starboard
fpm | osity m | 3500 | • | 3200
3700
3700
3700
3700
3700
3700
3700 | | Pressure,
Starboard
in. water | Kinematic Viscosity = 1,173 | 2.22 | Kinematic Viscosity | 1.55
1.55
1.55
1.55
1.55
1.55
1.55
1.55 | | Air
Velocity,
Port
fpm | = 4.0
= 1.966. | 5 | 1.966 | 4000
4500
3200
3200
3200
3200
3200
4500
4500
4500
4500
3000 | | Pressure,
Port
in. water | LENGTH/BEAM RATIO | 2.20 | er Density = | 1.00
1.72
1.72
1.72
1.66
1.66
1.66
1.66
1.66 | | Stern
Drop
in. | 4983, LENGT | -1.33 | lbs, Water | 0.07
0.057
0.080
0.076
0.080
1.1.1.26
1.1.25
1.1.25
1.1.25
1.1.25
1.1.25
1.1.65
1.1.65 | | Bow
Rise
.in. | MODEL 498 | 85 | ent = 336 | | | Sr
deg | Displac | 2.72 | Displaceme | | | Resistance
lbs | in = ~0.5 dec. | 33.0 | = 0 deg. | 12.8
80.2
11.1
11.1
12.2
20.2
25.9
25.1
28.9
45.3
45.3 | | Syeed
fps | Statio Trim | | Static Trim | 1 | TABLE 1. - Continued | Air
Velocity,
Starboard
fpm | 4000
4000
2500
3500
3500
100
100
4000
4200
4200
1100
1100
1200
4000
40 | |--------------------------------------|--| | Pressure,
Starboard
in. water | 1,60 400 1,56 400 1,56 400 1,54 300 1,56 350 1,56 100 0 0 10 0 0 10 1,08 300 1,18 420 1,10 1,00 110 1,10 1,10 1,10 1,10 1,10 | | Air
Velocit;,
Port
fpm | 5000
5000
4500
4500
4500
600
2500
4500
1700
3200
3200
1700
1600 | | Pressure,
Port
in. water | 1.58
1.58
1.58
1.58
1.58
0.19
0.19
1.22
1.24
1.26
1.26
1.26
1.26
1.26 | | Stern
Drop
in, | 1.57
-1.79
-1.79
-1.76
-1.76
-1.76
-1.00
-1.00
-1.96
-1.96
-2.12
-2.12
-2.12
-2.12 | | Bow
Rise
in. |
8.56
8.10
8.10
8.10
8.50
1.04
1.04
1.04
1.67
7.25
7.49
8.00
7.72
6.48
6.48
7.72
7.70 | | gan
deg | 3.90
3.90
3.30
3.30
0.59
0.59
1.31
2.72
2.72
2.76
2.76
2.76
2.76
2.76
2.76 | | Resistance
lbs | 37.8 3.90
45.0 3.36
47.8 3.36
47.4 3.30
47.4 3.30
11.9 0.59
11.9 0.59
11.9 0.59
22.8 3.22
49.3 2.25
49.3 2.25
23.0 3.16
22.8 3.22
49.3 2.25
23.0 3.16
22.8 3.22
49.3 2.25
23.0 3.16
22.8 3.22
49.3 2.25
34.0 2.50
34.0 2.50
35.5 30
45.9 2.76
45.9 2.76
45.9 2.76
48.5 2.21
48.5 2.21 | | Speed | 30.2
35.0
35.0
35.0
15.3
15.3
15.3
15.3
15.3
20.4
20.3
25.2
25.3
30.0 | TABLE 1 - Continued | Air
Velocity,
Starboard
fpm | 2200
3500
1300
3000
3000
1100
700
700
100
200
3000
400
500
3000
3000
3000
3000
3400 | |--------------------------------------|---| | Pressure,
Starboard
in, water | 1.14 222
1.18 140 150
1.09 135
1.14 30
1.14 30
3.72 8 8
3.74 11
3.64 6
3.64 2
3.64 11
4.56 5
6 4.56 30
4.56 30
4.56 30
4.56 30
4.56 30 | | Air
Velocity,
Port
fpm | 2200
3800
4500
1300
3000
220
150
1000
750
250
3000
3000
3000
3400 | | Pressure,
Fort
in, water | 1.17 1.16 1.14 1.13 1.13 3.37 3.37 3.38 3.38 3.28 4.63 4.63 4.88 4.88 4.78 4.40 4.24 | | Stern
Drop
in. | 784 1bs. W 784 1bs. W 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 | | Bow
Rise
in. | 225
260
260
27
260
27
27
27
27
27
27
27
27
27
27
27
27
27 | | 8r
áeg | 2.38 7. 2.57 7. 2.52 7. 2.14 6. 2.14 7. 1.01 2. 1.12 3. 2.05 3. 2.05 3. 2.05 3. 2.09 4. 3.00 9. 3.00 9. 3.00 9. 4.17 7. 4.11 7. 4.12 8. | | l Resistance
1bs | 18.9
48.0
53.6
61.6
58.7
21.6
20.5
20.5
20.5
66.9
65.3
65.3
61.9
113.2
53.0
53.0
58.1
68.1 | | Speed | 30.0
34.8
34.8
34.8
35.0
5.0
10.1
10.1
10.1
10.1
10.1
10.1
10 | TABLE 1 - Continued | - | | | |---|--------------------------------------|--| | | Air
Velocity,
Starboard
fpm | 1800
2800
2800
3400
3200
3200
4000
4000
3200
3200
32 | | | Pressure,
Starboard
in. water | 4.38
4.22
4.22
4.23
4.03
4.03
4.03
4.03
3.32
3.32
3.32
3.32
3.32
3.32 | | | Air
Velocity,
Port
fpm | 1800 4
3800 4
2800 4
3500 4
3200 4
4000 4
4000 4
4000 3
3200 4
4000 3
3200 4
4000 3
500 3
50 3
50 3
50 3 | | | Pressure,
Port
in. water | 1.02
1.02
1.02
1.02
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06 | | | Stern
Drop
in. | 10.04
10.052
10.052
10.095
10.09
10.09
10.09
10.09
10.09
10.03 | | | Bow
Rise
In. | 8 18
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | | | 81
deg | 3.95
4.36
4.36
4.34
1.34
1.34
1.34
1.31
1.31
1.31
1.31
1.31
1.31
1.31
1.31 | | | Resistance
lbs | 76.4
58.4
65.6
65.6
69.5
64.9
63.0
63.0
64.5
80.7
70.1
73.6
74.9
70.9
17.3
25.7
25.7
25.7
25.7
25.7 | | | Speed | 19.9
20.1
20.1
20.1
20.1
25.1
25.1
34.7
34.7
34.7
34.7
34.7
34.7
34.7
34.7 | TABLE 1 - Continued | Speed | Resistance
lbs | δτ
deg | Bow
Rise
in. | Stern
Drop
in. | Pressure,
Port
in, water | Air
Velocity,
Port
fpm | Pressure,
Starboard
in. water | Air
Velocity,
Starboard
fpm | |-------|-------------------|-----------|--------------------|----------------------|--------------------------------|---------------------------------|-------------------------------------|--------------------------------------| | ı. | | 9 | | í | | | | 000 | | | | N
 4.US | • | • | 7/2 | • | 002 | | • | | u. | 4.13 | • | | 200 | • | 300 | | | | E, | 4.26 | 0.59 | • | 300 | • | 800 | | | | 'n | 5.87 | 1.48 | 3.20 | 009 | 3°t6 | 300 | | , , | | 7 | 6.22 | | • | 800 | • | 200 | | | | 9 | 3.48 | 1.94 | 0 | 0 | 0 | 0 | | | | ູ | 8.59 | | • | 1600 | | 1600 | | | | 9. | 8.42 | | • | 2200 | • | 2200 | | | | 7 | 8,70 | | • | 2500 | • | 2500 | | | | ⅎ | 7.95 | 1.16 | 3.40 | 1200 | 3.71 | 1200 | | | | Φ, | 6.65 | • | • | 1000 | | 800 | | | | .7 | 10.77 | • | • | 3600 | J | 3600 | | | | m, | 4°19 | • | 0 | 0 | 0 | 0 | | | | ≠. | 10.27 | -1.15 | 3.62 | 2500 | • | 2500 | | | | æ | 10.89 | • | • | 3800 | • | 3800 | | | | €, | 06.0 | • | • | 2000 | | 2200 | | | | 7 | 9.31 | -0.77 | • | 1700 | | 1800 | | | | 9. | 8.1. | -0.70 | • | 1500 | • | 1500 | | | | ᅼ | 0 † *9 | 0 | • | 009 | • | 00+ | | | | 8 | 5.83 | 0 | • | 00 1 | • | 200 | | | | 9. | 10.38 | • | • | 3200 | • | 3200 | | | | 7 | 7.99 | -0.28 | | 1500 | • | 1100 | | | | ε, | 7.05 | -0.12 | 3.21 | 006 | | 900 | | | | 5 | 10.56 | • | 9. | 2800 | | 2800 | | 24.6 | 70.3 | 4.55 | • 6 | • | 3.59 | 2600 | 3.62 | 2600 | | | • | 4.08 | 9,33 | -1.00 | ≠. | 1800 | • | 1500 | TABLE 1 - Continued | | -1 | |--------------------------------------|---| | Air
Velocity,
Starboard
fpm | 400
2400
1000
3600
3600
4000
2700
1900
1900
1900
3900
3900
2400
2800
2400
2800
2400
2400
2800 | | Pressure,
Starboard
in, water | 2.12 400 3.78 2000 3.68 1000 3.64 3600 0 3.48 3000 3.68 1600 3.68 1600 3.48 2700 3.66 3900 3.66 3900 3.66 3900 3.66 3000 3.66 3000 3.68 2400 3.68 2400 3.68 2000 3.68 2000 3.68 2000 3.68 2000 3.68 3000 3.68 3000 3.68 3000 3.68 3000 3.68 3000 3.68 3000 3.68 3000 3.68 3000 3.68 3000 3.68 3000 3.68 3000 3.68 3000 3.68 3000 3.68 3200 3.68 3200 3.68 3200 3.68 3200 3.68 3200 3.68 3200 3.68 3200 3.68 3200 | | Air
Velocity,
Port
fpm | 600
2000
2800
1000
3800
3000
1600
2700
1900
1900
1900
3200
3200
2400
2800
2800
300
300 | | Pressure,
Port
in. water | 2.01
3.48
3.48
3.48
3.48
3.48
3.48
3.48
3.48 | | Stern
Drop
in. | 11.28
11.28
11.28
11.28
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38
11.38 | | Bow
Rise
in. | 7.08
10.20
10.51
8.53
10.51
10.78
6.66
10.76
10.76
10.30
10.33
10.32
10.33
10.32
10.33
10.33
10.33
10.33
10.33 | | Sr
deg | 3.27
3.88
4.52
4.52
4.05
4.05
4.05
4.05
3.91
3.91
3.91
3.84
Displace | | Resistance
Lbs | 136.4
69.9
69.5
83.8
70.3
167.3
72.6
73.0
76.1
81.1
74.4
71.8
79.5
75.4
79.5
75.4
79.5
75.4
75.8
75.8
75.4
75.8
75.4
75.8
75.4
75.8
75.8
75.8
75.8
75.8
75.8
75.8
75.8 | | Speed
fps | 24.8
24.9
24.9
24.9
25.0
29.9
30.0
34.9
34.9
34.9
34.9
35.0
35.0
5.4 | TABLE 1 - Continued | Air
Velocity,
Starboard
fpm | 800
1200
1200
200
200
1000
1600
1600
1200
12 | |--------------------------------------
--| | Pressure,
Starboard
in. water | | | Air
Velocity,
Port
fpm | 200
1200
100
200
200
200
3200
1100
1500
1100
1100
1100
1100
1100 | | Pressure,
Port
in. water | 2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000 | | Stern
Drop
in. | 0.90
1.76
1.76
0.20
0.55
0.20
0.50
0.50
0.50
0.50
0.11.70
1.190
1.190
1.190
1.190 | | Bow
Rise
in. | 7.19
8.42
9.75
9.67
9.67
9.88
9.26
9.37
10.42
10.42
10.33
10.14
9.45
9.77 | | Sr
deg | 3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25 | | Resistance
1bs | 61.4
85.3
72.1
58.3
60.8
60.8
60.5
60.5
64.9
64.9
64.9
64.9
64.9 | | Speed
fps | 10.1
10.2
10.2
10.2
10.2
10.2
10.2
10.2 | TABLE 1 - Continued | | | 68 | |--------------------------------------|---|--| | Air
Velocity,
Starboard
fpm | 3200
1800
1800
1600
2500
3000
3000
1000
1000
1500
1500 | <pre>Kinematic Viscosity = 1,189 7.38 3200 6.92 3500</pre> | | Pressure,
Starboard
in, water | 39325 883324 883324 883324 88324 88324 88324 883 883 883 883 883 883 883 883 883 88 | Kinematic V1
7.38
6.92 | | Air
Velocity,
Port
fpm | 3200
1400
10000
10000
18000
25000
3500
25000
16000
18000
26000 | 3800
4000 | | Pressure,
Port
in. water | 860000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Water Density
6.98
6.60 | | Stern
Drop
in. | 11.98
11.2.2.2.80
12.2.2.2.6.92
12.2.3.0
12.3.3.0
13.0.3.0
13.0.3.0
13.0.3.0
13.0.3.0
13.0.3.0
13.0.3.0
13.0.3.0 | 1458 1bs,
-1.06
-3.34 | | Bcw
R1se
≟n. | 9.72
9.17
9.17
9.01
7.64
7.64
7.09
9.39
9.16
9.19
9.16
7.95 | 85 | | δτ
deg | | Displacement
6.35 14. | | Resistance
lbs | 71.7
75.3
78.4
76.2
115.2
144.7
79.0
86.6
86.6
86.4
86.4
89.0
90.8 | Trim = -0.5 deg.
146.1
159.1 | | Speed
fps | 22222222222222222222222222222222222222 | Static Tr
24.4
34.8 | TABLE 1 - Continued | Air
Velocity,
Starboard
fpm | y = 1,173 | 6 | 2200 | 2500 | 1700 | 2800 | 2000 | 1400 | 1200 | 3000 | 1000 | 3000 | 2600 | sity ** 1.173 | 0 | 10 | S. | 0 | 1600 | 1600 | 1800 | 3200 | |--------------------------------------|--|-------|-------|-------|-------|-------|-------|-------|-------|-------------|-------|--------------|-------|------------------------|--------|-------|------|-------|-------|-------|-------|-------| | Pressure,
Starboard
in, water | Density = 1,966, Kinematic Viscosity = | 00 | 8.67 | 7.48 | 6.97 | 7.34 | 7.24 | 9.19 | 6.68 | †6.9 | 6.34 | 6.9 ф | £.88 | Kinematic Viscosity ** | Ö | 4.07 | 0.30 | 0 | 6,60 | 6,32 | 6.27 | 6.39 | | Air
Velocity,
Port
fpm | 1,966, Kiner | 00 | 2500 | 2500 | 1800 | 2800 | 2000 | 1800 | 2000 | 3000 | 2000 | 3000 | 2600 | = 1.966, | 0 | 10 | 100 | 0 | 1500 | 1000 | 1000 | 3200 | | Pressure,
Port
in, water | Water Density | 0 | 7.79 | 6.76 | 6.54 | 6.48 | th.9 | 6.20 | 6.23 | 6.20 | 5.98 | 6.22 | 6.15 | Water Density | 0 | 4.01 | 0,15 | 0 | 6,39 | 5.90 | 90*9 | 6.39 | | Stern
Drop
in. | 1458 lbs, Wat | 0.36 | 2.16 | -0.70 | -1.28 | -1,33 | -1,33 | -2.21 | -2,39 | 2.56 | -3.41 | | -3,39 | 1bs. | 0.47 | 0.59 | 0,39 | 2,29 | 1,92 | -1.54 | -1.53 | -1.73 | | Bow
Rise
in. | 11 | -0.71 | 11.70 | 14.64 | 13,29 | 13.93 | 13,70 | 13,14 | 13,36 | 13,75 | 13.10 | 13,36 | • | ement = 1458 | 16°-0- | -0.21 | 1,83 | -0-74 | 11,56 | 13,31 | 13,39 | 14,15 | | δτ
deg | Displacement | 0 | 908 | 6.85 | 5,90 | 6.18 | 6.05 | 5,37 | 5,38 | 5,48 | 4.75 | 4.85 | • | Displacem | 0 | 0 | 1.04 | 0.70 | 6.60 | 5.75 | 5.80 | 6.10 | | esistance
lbs | = 0 deg. | 24.3 | 176.6 | 155.5 | 149.8 | 146.0 | 149.2 | 159.6 | 157.5 | 151.0 | 167.5 | 57 | 57 | Trim = 1.0 deg, I | 21.8 | | 1°-1 | | | 172.9 | | • | | Speed | Static Trim | 0.0 | 15.0 | 20.2 | 25.0 | 25.0 | 25.1 | 29.7 | 30.0 | 30,1 | 34.6 | 34.8 | 35,3 | Static Tr | 5.1 | 5.1 | | 10.1 | 15,3 | 19.8 | 20.0 | 20.0 | TABLE 1 - Continued | Air
Velocity,
Starboard
fpm |
800
1800
1300
2200
3500
3500
1200
2800
2800
2200
2200 | #000
1000
3000
3400 | |--------------------------------------|--|--------------------------------------| | Pressure,
Starboard
in, water | 6.02
5.38
4.47
5.94
6.02
6.02
5.86
5.83
4.72
5.54
5.60 | 0.96
0.90
0.94
1.00 | | Air
Velocity,
Port
fpm | 1000
1500
1100
2000
3000
3000
5500
1200
1200
1700
3500
1000
1000
1000
1000
1000
55
1000
55
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000 | 5000
0
1500
3000
4000 | | Pressure,
Port
in, water | 5.36
4.46
5.36
5.96
6.15
5.93
5.94
4.48
6.00
5.02
6.16
4.42
5.84
5.80 | 1.62
1.56
1.58
1.60 | | Stern
Drop
in. | 13.39 -1.63 5.36 12.95 -2.29 5.36 12.95 -2.29 5.36 12.79 -1.94 4.46 12.36 -2.25 5.93 12.88 -3.52 5.84 12.89 -3.52 5.84 12.49 -3.38 5.94 12.49 -4.40 6.16 12.34 -4.40 6.16 12.34 -4.40 5.02 12.34 -4.40 5.84 12.37 -4.46 5.84 12.37 -4.46 5.84 12.37 -4.46 5.84 12.37 -4.46 5.84 12.37 -4.46 5.84 12.37 -4.46 5.84 12.37 -4.46 5.84 | 000001
00001
0001 | | Bow
Rise
in. | 13.39
12.95
12.95
12.88
12.88
12.88
12.84
12.94
12.94
12.94
12.94
12.94
12.94
12.94 | 77.77
7.65
7.65 | | 81
deg | 5.75
5.21
5.23
5.23
4.60
4.60
4.52
4.52
4.52
4.52
3.88
3.88
3.88 | 2.98
2.93
2.93
2.73 | | Resistance
1bs | 178.0
190.2
211.7
173.6
162.8
176.2
164.0
173.5
210.3
161.3
163.4
165.4
210.7
163.7 | 20.33.44
199.6
199.6
23.88 | | Speed | 21.0
24.9
25.0
25.0
25.0
29.3
29.5
34.2
34.5
34.5
34.5 | 10.0
10.1
10.2
10.3
15.3 | SERVICE STATE AND ASSESSED AS A STATE OF STATE AS A STATE COMMISSION OF SERVICE STATE STATE ASSESSED AS A STATE OF SERVICE OF SERVICE STATE ASSESSED AS A STATE OF SERVICE STATE AS A STATE OF SERVICE STATE OF SERVICE STATE AS A STATE OF SERVICE STATE OF SERVICE STATE OF SERVICE STATE AS A STATE OF SERVICE TABLE 1 - Continued | Air
Velocity,
Starboard
fpm | 2500
1000
2700
1800
1000
2500
2500
2000
2000
2000
3000
4000
1000 | |--------------------------------------|---| | Pressure,
Starboard
in, water | 2.07 2500
1000 2700
0.94 1800
0.94 1800
0.96 2500
0.96 2500
0.96 2300
1.18 1000
0.98 2000
0.98 2000 | | Air
Velocity,
Port
fpm | 2900
1500
3000
2000
1250
3000
1500
3500
3500
3500
3500
3500
1500
1 | | Pressure,
Port
in, water | 1.61
1.55
1.55
1.55
1.48
1.40
1.40
1.40
1.44
1.44
1.44
1.03
1.02
1.03 | | Stern
Drop
in. | 8100 611 111 111 11 1 0 0 0 0 0 0 0 0 0 0 | | Bow
Rise
In. |
2.0
7.5
7.1
7.1
7.0
7.0
7.0
7.0
7.0
7.0
7.0
6.0
6.0
6.0 | | 81
deg | 0.43
2.68
1.15
2.68
7
2.68
7
2.65
7
2.48
7
2.48
7
2.48
7
2.48
7
2.48
7
2.48
7
2.48
7
2.48
7
2.48
7
2.48
7
2.48
7
2.48
7
2.52
7
2.48
7
2.52
7
2.48
7
2.53
9
7
2.53
9
7
2.53
9
7
2.53
9
7
2.53
9
7
2.53
9
7
2.53
9
7
2.53
9
7
2.53
9
7
2.53
9
7
2.53
9
7
2.53
9
7
2.53
9
7
7
2.53
9
7
7
2.53
9
7
7
2.53
9
7
7
2.53
9
7
7
2.53
9
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7 | | Resistance
1bs | 54.4
22.8
24.8
75.0
32.8
33.5
33.5
33.5
33.5
32.8
44.0
64.0
62.3
153.8
71.9
68.2
68.0
68.0
24.2
24.2
23.6
23.7 | | Speed | 15.3
15.5
16.0
20.1
20.2
20.2
20.2
20.3
30.0
30.0
30.0
30.0 | TABLE 1 - Continued | Air
Velocity,
Starboard
· fpm | 2000
3000
1500
2000
3000
3000
2000
1500
2000
2000
1000 | 1500
1800
1750
1750
1000
1000
2300
1100 | |--|--|---| | Pressure,
Starboard
in. water | 0.44
0.48
0.43
0.43
0.54
0.54
0.54
0.51
0.51 | 11.90
1.92
2.02
1.87
2.07
2.07
1.98 | | Air
Velocity,
Port
fpm | 2500
3800
1800
1800
4000
1500
2500
2500
1500
3000
1200 | 1.968, Kinematic
1750 1
2000 2
2000 2
2000 1
200 2
1600 1
1100 1 | | Pressure,
Port
in. water | 0.90
0.94
0.98
0.95
0.12
0.48
0.48
0.06
0.96 | Jensity = 3.21
3.21
3.22
3.06
3.11
3.28
3.18 | | Stern
Drop
in. | 00411444444444 | -0.2
-0.2
-0.2
-0.3
-0.3
-0.5 | | Bow
Rise
in. | 00000000000000000000000000000000000000 | 7.0
7.1
7.1
7.1
7.1
7.0
8.3 | | 8r
deg | 2.65
2.23
2.23
2.28
2.28
1.93
1.93
1.77
1.55 | Displacement 2.93 2.93 2.93 2.93 2.93 3.27 3.05 | | Resistance
lbs | 32.1
31.7
51.8
50.2
60.2
68.0
66.0
61.6 | = 0 deg,
37.5
37.5
37.3
42.8
40.3
40.3
50.7 | | Speed | 15.2
20.1
20.1
25.2
30.9
33.0 | Static Trim
10.2
10.2
10.3
11.0
15.0
15.0 | TABLE 1 - Continued | Air
Velocity,
Starboard
fpm | 0
1800
1800
2000
2000
900
550
1800
1800
1800
2500
1500
1500
1500
2500
1500
1500
15 | |--------------------------------------|--| | Prescure,
Starboerd
in, water | 0 0
1.97 1800
2.02 1800
2.05 2000
2.06 3000
2.06 3000
1.50 550
1.89 1800
1.87 1800
1.87 1800
2.76 2500
2.56 1800
1.91 1800
2.56 1800
1.91 2500
2.50 2500
1.91 1500
1.91 1500 | | Air
Velocity,
Port
fpm | 0
2000
2100
2100
3100
1000
1000
2000
200 | | Pressure,
Port
in. water | 0
3.28
3.12
3.12
3.17
3.12
3.05
3.06
3.07
3.07
3.02
3.02
3.02
3.02
3.02
3.01
3.12
3.02
3.01
3.12
3.12 | | Stern
Drop
in. | 8 | | Bow
Rise
in. | 2.6
7.7
9.0
4.1
9.3
8.0
6.5
8.6
8.7
8.7
8.8
8.7
8.7
8.7
8.7 | | δτ
deg | 1.83 2
3.10 7
2.55 6
3.50 9
3.50 9
3.15 8
3.38 8
3.38 8
3.38 8
3.27 8
3.22 8
3.29 8
3.03 8
3.10 8
3.22 8 | | Resistance
lbs | 121.4
40.2
42.2
52.8
141.0
52.3
63.3
81.5
56.1
74.9
74.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
71.9
96.7
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9
96.9 | | Speed
fps | 15.1
15.3
15.3
20.2
20.3
20.3
20.3
25.2
25.2
25.2
30.3
30.3
30.4
31.3
31.3
10.1 | TABLE 1 - Continued | Speed
fps | Resistance
lbs | δτ
deg | Bcw
Rise
in. | Stern
Drop
in. | Pressure,
Port
in. water | Air
Velocity,
Port
fpm | Pressure,
Starboard
in, water | Air
Velocity,
Starboard
fpm | |--------------|-------------------|-----------|--------------------|----------------------|--------------------------------|---------------------------------|-------------------------------------|--------------------------------------| | | | | | | | | | | | 2 | | • | 7.0 | 1.0 | 2.20 | 2800 | 1,50 | 2000 | | m | • | • | 7.0 | 1. 0 | 2.12 | 1800 | 1.42 | 1000 | | m | | • | 1.2 | 1.7 | 0 | 0 | c | 0 | | 00 | | • | 0.4 | J.4 | 0 | 0 | Ö | 0 | | 2 | | | 7.7 | ħ. 0 | 2,14 | 3800 | 1,58 | 3000 | | m | | | 7.2 | 0.7 | 2.08 | 1800 | 1.,38 | 1000 | | e | | • | 7.4 | 9.0 | 2.07 | 2300 | 1°44 | 2000 | | ٦ | | 4 | 6*9 | -0 . 6 | 2.03 | 1700 | 1.17 | 1000 | | 2 | | ٠ | 7.0 | -1.3 | 2.20 | 3800 | 1.42 | 3000 | | 2 | • | - 5 | 5.4 | 0 | 0 | 0 | 0 | 0 | | m | | | 7.0 | -1.0 | 2.18 | 2700 | 1,36 | 2000 | | 2 | 77.0 | 2.52 | 7.7 | -1.7 | 2,34 | 4500 | 1.48 | 3500 | | 6 | | • | 6.2 | -0 . 8 | 0 | 0 | 0 | 0 | | 2 | | • | 7.4 | .1.5 | 2.12 | 2800 | 1.29 | 2000 | | m | | • | 7.0 | -1,1 | 1,76 | 1900 | 1.01 | 1000 | | 6 | | | 6.5 | -1.3 | 0 | 0 | 0 | 0 | | 2 | | • | 7.0 | -2.0 | 2.07 | 2000 | 1.24 | 1000 | | m | | • | 7.4 | -2.3 | 2,24 | 3000 | 1.46 | 2000 | | m | | • | 7.6 | -2.3 | 2.40 | 3500 | 1.80 | 3000 | | z, | | • | 6.5 | -1.7 | 0 | O | 0 | 0 | | 6 | • | • | 7.0 | -2.5 | 2,21 | 2000 | 1.44 | 1100 | | 0 | | • | 7.1 | -2.5 | 2,22 | 2800 | 1.49 | 2000 | | 2 | 97.8 | 2.10 | 7.5 | -2.5 | 2.20 | 3500 | 1.51 | 3000 | | | | | | | | | | | TABLE 1 - Continued の Marie M | Air
Velocity,
Starboard
fpm | ity = 1.275 | ស | 85 | 52 | 0 | ى
ئى | 55 | 65 | 20 | 160 | 9 | 80 | 200 | 1000 | 1000 | 30 | 30 | 9 | 45 | 35 | 35 | 35 | 30 | 9 | 1 +0 | | |--------------------------------------|------------------|--------|---------|------|---|--------------|------|------|------|------|------|------|-------------|------|--------|------|------|-------------|-------|------|------|------|------|----------|-------------|---| | Pressure,
Starboard
in, water | mtic Viscosity | 2.46 | 6.78 | 5.68 | 0 | 0.7 4 | 3.62 | 4.80 | 4°98 | 6.60 | 4.20 | 5.68 | 06*9 | 7.74 | • | 5.54 | 3.70 | • | 5.10 | 5,58 | 6,56 | 6.78 | 7.64 | 6.55 | 6.32 | | | Air
Velocity,
Port
fpm | 1.967, Kinematic | 2
S | .:
⊗ | 55 | 0 | 55 | 55 | 65 | 70 | 760 | 90 | 80 | 200 | 1000 | 1000 | 30 | 30 | 9 | 45 | 35 | 35 | 35 | 30 | 6 | 0+1 | | | Pressure,
Port
in. water | r Density = | 2.37 | 6.24 | 5.23 | 0 | 0.97 | 3.82 | œ | • | 6.50 | • | • | • | | 1 | 5,14 | • | • | | 5.22 | | | 7,32 | 6.12 | œ | | | Stern
Drop
in. | lbs, Water | • | • | • | • | 2.8 | • | • | | 2.5 | | • | • | | !
! | 0.3 | 0.2 | !
! | : : | 0.2 | +°0- | -0°3 | -0.5 | 0 | 0 | | | Bow
Rise
in. | t = 1456 | 3.4 | 7.3 | | • | 2.7 | | | • | 7.0 | • | • | 6. 8 | 7.8 | !
! | 8.3 | 8,1 | !
!
! | !! | 8.2 | 8.7 | | • | 7.8 | • | | | δτ
deg | Displacement | | | | | 2,31 | | e | • | | | | | • | E . | 3.67 | 3.48 | 1 1 | 1 1 1 | 3,52 | ., | 3 | = | 3,28 | ۳, | | | Resistance
lbs | = 0 deg, | • | • | • | 282.6 | | | Speed | Static Trim | • | • | • | • | • | | | | | | | | | • | | • | | | • | • | • | • | • | 20.3 | • | TABLE 1 - Continued | | | | | | | | | | , | |-------|-------------------|---------------|--------------------|----------------------|--------------------------------
---------------------------------|-------------------------------------|--------------------------------------|---| | Speed | Resistance
lbs | δτ
deg | Bow
Rise
in. | Stern
Drop
in. | Pressure,
Port
in, water | Air
Velocity,
Port
fpm | Pressure,
Starboard
in. water | Air
Velocity,
Starboard
fpm | 1 | | | | | | | | | | | : | | | | 3,23 | 7.7 | 0 | 7.62 | 011 | 8.13 | 0+ | | | | | 3,32 | 7.9 | 0 | 9.18 | .70 | 9.80 | 70 | | | | | 3,56 | 7.8 | 0.7 | 0 | 0 | o | 0 | | | • | • | 3,65 | 8.7 | 0 | 3.97 | មា | 1.65 | 35 | | | | | 3.67 | 8.5 | 0.1 | 6.24 | 30 | 6.70 | 30 | | | • | | 3,48 | 8.2 | 0.1 | 0 1 , 8 | 45 | 11.8 | 1 +2 | | | • | • | 3.70 | 8.7 | 0.1 | 8.22 | 9 | 8.60 | 9 | | | • | | 3,37 | 8.0 | 0 | 0 | 0 | 0 | 0 | | | • | • | 3,65 | 4. 8 | 0.3 | 0 | 0 | 0 | 0 | | | • | | 5,40 | • | -1.1 | 7.94 | 3000 | 4°24 | 3000 | | | | | 4.98 | 12.9 | -1.0 | 7.70 | 3000 | 3.70 | 3000 | | | • | | 5.56 | 13.0 | 0.3 | 7 , 18 | 3500 | 90 * † | 3500 | | | • | | t, 40 | ⊅ •6 | 1.1 | 0 | .0 | 0 | 0 | | | • | | 5,32 | 12.7 | 0 | 7.20 | 3000 | 4.50 | 3000 | | | | | 5.62 | 13.4 | 0 | 7.22 | 2000 | 4,29 | 5003 | | | • | | 4,70 | 12.0 | 1.0 | 6.13 | 800 | 68.9 | 800 | | | • | | 5.12 | 13.0 | -0°8 | 7.02 | 2500 | 4.05 | 2500 | | | | | 5,15 | 13.4 | -1.1 | 7.00 | 5500 | 3,92 | 5500 | | | • | | 5.20 | 13.0 | -0.6 | 7.10 | 3500 | 5,12 | 3500 | | | • | | 5,03 | 13.0 | -1.0 | 7.02 | 000th | 4.03 | 000t | | | 33,1 | 179.1 | 5.12 | 13.5 | -1.2 | 6.85 | 3500 | ±0.± | 3500 | | | • | a | о 6° н | 13,3 | -1.6 | 6.95 | 2500 | † 0 •† | 5500 | | TABLE 1 - Continued | Air
Velocity, | Starboard
fpm | Viscosity = 1.275 | 3000 | 2800 | 000h | 2500 | 3000 | 3000 | 3200 | 3660 | 2600 | 3100 | 2000 | 708h | 2600 | 3200 | 5000 | 4000 | 3500 | 2500 | 2000 | 4000
1 | 200U | 3000 | |------------------------|------------------|------------------------|------|-------|------|------|------|------|------|------|------|------|----------------|------|------|--------------|------|------|------|------|------|-----------|------|-------| | Pressure,
Starboard | in. water | 1.967, Kinematic Visco | 3.00 | 6,16 | 3.70 | 3,65 | 3,52 | 5.66 | 2.46 | 3,41 | 3,50 | 2.80 | 1,52 | 3°₁8 | 2.00 | 2.70 | 0.78 | 1.42 | 2.92 | 0.65 | 2.78 | 0°84 | • | 0, 60 | | Air
Velocity, | Port
fpr | Ħ | 3000 | 2800 | 0004 | 2500 | 3000 | 3000 | 3200 | 3660 | 2600 | 3100 | 2000 | 008h | 2600 | 3200 | 2000 | 4000 | 3500 | 2500 | 2000 | 000ti | 2000 | 3000 | | Pressure,
Port | in. water | Water Density | ატ | 6.23 | 6.17 | 6.08 | 6.11 | 4.76 | t.47 | 5,58 | 4.72 | 5.16 | 2.74 | 5.74 | 3.88 | ₩ 9°₩ | 1.28 | 2.76 | 4,72 | 1,36 | 3,99 | 1.84 | 0.70 | 1.14 | | Stern | in. | 1456 lbs, W | 1.0 | 1,3 | -2.0 | -1,0 | -1.7 | -0-7 | .1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.4 | -1.0 | -1.0 | -2.0 | -1.8 | -2.2 | -1.8 | -1.9 | -2.7 | -2.5 | -2.6 | | Bow | in. | ement = 1 | 0"6 | 10.3 | 12.5 | 12.2 | 12.2 | 11.3 | 11.4 | 11.6 | 11.4 | 11.6 | 11.5 | 12.7 | 11,5 | 11.5 | 12.0 | 11.9 | 12.0 | 11.6 | 11.8 | 11.8 | 11,5 | 12.1 | | 81
deg |) | Displac | 4.20 | 14.86 | 01.1 | 4.70 | 01.1 | 4.45 | 4.37 | 4.45 | 4.37 | 4.45 | 01.4 | 4.73 | 01.1 | 07.7 | 4.20 | 4.23 | 4.12 | 4.12 | 4.15 | • | 3.78 | | | Resistance
lbs | | Trim = 1.0 deg. | • | 138.7 | | | • | | | | | | 219 . 4 | | | | | | | | | | | | | Speed | 4 | Static | 10.3 | 13.4 | 20.3 | 20,3 | 20.4 | 24.9 | 24.9 | 25.1 | 25.1 | 25,2 | 25,3 | 25.4 | 25.4 | 25.6 | 30.2 | 30.2 | 30,3 | 30°4 | 30.6 | 33.0 | 33,1 | 33,3 | TABLE 1 - Continued | Static Trim = 0 deg, Displacement = 2160 lbs, Water Density = 1.968, Kinematic Viscosity = 1.5.3 15.3 315.3 5.90 11.5 2.5 13.29 4500 7.84 2000 20.1 288.2 6.45 16.5 -1.1 8.86 2200 7.84 2000 20.2 288.2 6.45 16.5 -1.5 9.02 3000 7.84 2000 25.3 342.5 5.95 14.7 -0.5 5.94 5000 5.23 1000 25.3 342.5 5.95 14.7 -0.5 5.94 0000 3.12 3000 30.1 399.4 5.95 14.7 -0.5 3.88 2000 6.18 3000 30.1 399.4 5.56 15.5 -2.2 0.43 3200 0.18 3000 30.1 399.4 5.56 15.5 -2.2 0.43 3200 0.18 3000 30.3 407.0 3.65 10.5 -1.8 0.68 2800 1.20 2000 30.3 407.6 5.35 16.0 -3.2 0.42 2600 0.18 3500 33.1 407.6 5.35 16.0 -3.2 0.42 2600 0.18 3500 33.1 407.6 5.35 16.0 -3.2 0.42 2600 0.18 2000 33.1 407.6 5.35 16.0 -3.2 0.42 2600 0.18 2000 33.1 407.6 5.35 16.0 -3.2 0.42 2600 0.18 2000 33.1 407.6 5.35 16.0 -3.2 0.42 2600 0.18 2000 33.1 407.6 5.35 16.0 -3.2 0.42 2600 0.18 2000 33.1 403.3 1.4 2.3 3.32 0 2.50 2.33 0 2.3 | Speed | Resistance
lbs | δτ
deg | Bow
Rise
in. | Stern
Drop
in. | Pressure,
Port
in, water | Air
Velocity,
Port
fpm | Pressure,
Starboard
in. water | d Velocity,
r Starboard
fpm | | |--|-------|-------------------|-------------------|--------------------|----------------------|--------------------------------|---------------------------------|-------------------------------------|-----------------------------------|---| | 315.3 5.90 11.5 2.5 13.29 4500 13.91 300 288.2 6.45 16.5 -1.1 8.86 2200 7.84 200 289.4 6.05 16.0 -1.5 9.02 3000 7.31 200 341.7 6.10 15.8 -1.2 8.41 200 6.76 223 342.5 5.95 14.7 -0.5 3.88 2400 3.21 180 351.1 3.95 10.0 -0.6 4.03 4000 3.15 301 408.5 5.56 15.5 -2.2 0.43 3200 0.18 800 407.0 3.65 10.5 -2.2 0.43 3200 0.18 800 407.0 3.65 10.5 -1.8 0.68 2800 1.20 200 407.0 3.65 10.5 -1.8 0.68 2800 1.20 200 407.0 3.65 10.5 -1.8 0.68 2800 1.20 200 407.0 3.65 15.5 -3.0 1.11 4.50 0.18 313 0 2.34 37.5 0.15 0.4 3.13 0 2.34 37.5 0.15 0.4 3.13 0 2.34 37.2 3.5 1.4 8.5 4.6 3.13 0 2.33 37.2 3.5 1.4 8.5 4.6 3.13 0 2.33 37.2 5.3 1.4 8.5 10.28 10.0 0.0 0.00 2.3 1.4 2.5 3.5 4.6 3.13 0 2.33 37.2 5.3 5.3 1.4 6.5 3.3 10.28 10.0 0.7 88 120 20.3 10.4 6.0 1.4 8 -1.1 6.98 800 7.88 120 20.3 10.4 6.0 1.8 1.1 6.0 6000 8.64 50. | 1 1 | = 0 deg. | isplacemer | 11 | O lbs, Wat | er Density = | 1.968, | nematic Visc | osity = 1.312 | | | 288.2 6.45 16.5 -1.1 8.86 2200 7.84 200 289.4 6.05 16.0 -1.5 9.02 3000 7.31 200 289.4 6.05 16.0 -1.5 9.02 3000 7.31 200 341.7 6.10 15.8 -1.2 8.41 200 6.76 20 341.7 -0.5 3.88 2400 3.21 182 351.1 3.95 14.7 -0.5 3.88 2400 3.21 188 351.1 3.95 10.0 -0.6 4.03 4000 3.15 300 408.5 5.56 15.5 -2.2 0.43 3200 0.18 300 407.0 3.65 15.5 -2.2 0.43 3500 1.21 300 407.0 3.65 10.5 -1.8 0.68 2800 1.20 200 407.6 5.35 16.0 -3.2 0.42 2600 0.18 200 407.6 5.35 16.0 -3.2 0.42 2600 0.18 200 407.6 5.35 16.0 -3.2 0.42 2600 0.18 200 403.3 5.65 15.5 -3.0 1.11 4500 0.18 200 Trim = 1.0 deg, Displacement = 2160 lbs, Mater Density = 1.967, Kinematic Viscosity 222.3 1.53 1.4 2.3 3.32 0 2.33 372.1 5.34 8.5 4.6 3.13 0 2.33 372.2 5.15 8.7 3.8 10.28 160 7.96 11.2 222.3 16.5 -2.0 9.46 3.13 0 6.5 3.3 372.2 5.15 8.7 3.8 10.28 160 7.88 120 269.7 6.03 16.5 -2.0 9.39 6000 6.72 37 270.9 5.94 16.0 -1.9 9.39 6000 6.70 | ج ع | 315.3 | 6 | 11.5 | 2.5 | 13.29 | H200 | • |
3000 | | | 289.4 6.05 16.0 -1.5 9.02 3000 7.31 200 341.7 6.10 15.8 -1.2 8.41 200 6.76 22 342.5 5.95 14.7 -0.5 5.94 5000 5.23 400 353.4 5.95 14.7 -0.5 5.94 5000 5.23 400 353.4 5.95 14.7 -0.5 5.94 5000 5.23 180 359.4 5.95 14.7 -0.5 5.94 5000 5.15 300 399.4 5.56 15.5 -2.2 0.43 3200 0.18 300 407.0 3.65 10.5 -2.2 0.33 1400 0.18 80 407.0 3.65 10.5 -1.8 0.46 2600 0.18 200 407.0 5.35 16.0 -3.2 0.42 2600 0.18 200 407.0 5.35 16.0 -3.2 0.42 2600 0.18 200 403.3 5.65 15.5 -3.0 1.11 4500 0.76 350 Trim = 1.0 deg, Displacement = 2160 lbs, Mater Density = 1.967, Kinematic Viscosity 37.5 0.15 0.0 4.6 3.13 0 2.32 390.3 4.22 3.5 4.6 3.13 0 2.32 372.1 5.34 8.5 4.6 3.13 0 2.32 372.1 5.34 8.5 4.6 3.13 0 2.32 372.1 5.34 8.5 4.6 3.13 0 2.32 372.1 5.34 8.5 4.8 8.5 10.28 100 7.86 110 225.3 1.65 -2.0 3.8 10.28 100 6.72 7.86 269.7 6.03 16.5 -2.0 8.6 6000 6.72 7.86 270.9 5.70 14.8 -1.1 6.98 100 6.72 7.86 270.9 5.94 16.0 -1.9 9.39 6000 8.64 500 | | 288.2 | ב : | 16.5 | -1-1 | 8.86 | 2200 | 7.84 | 2000 | | | 341.7 6.10 15.8 -1.2 8.41 200 6.76 26 342.5 5.95 14.7 -0.5 5.94 5000 5.23 400 353.4 5.95 14.7 -0.5 3.88 2400 3.21 18 353.4 5.95 14.7 -0.5 3.88 2400 3.15 18 351.1 3.95 10.0 -0.6 4,03 4000 3.15 30 408.5 5.56 15.5 -2.2 0.43 3200 0.18 30 407.0 3.65 10.5 -1.8 0.68 2800 1.21 30 407.0 3.65 10.5 -1.8 0.68 2800 1.20 20 407.0 3.65 15.5 -3.0 1.11 4500 0.76 30 403.3 5.65 15.5 -3.0 1.11 4500 0.76 31 403.3 1.5 15.5 -3.0 | 20.2 | 289.4 | 0 | 16.0 | -1.5 | 9.02 | 3000 | 7.31 | 2000 | | | 342.5 5.95 14.7 -0.5 5.94 5000 5.23 400 353.1 180 353.4 369.14.7 -0.5 3.88 2400 3.21 180 353.1 180 353.4 300 3.15 300 3.15 300 3.15 300 3.15 300 3.15 300 3.15 300 3.15 300 3.15 300 399.4 5.56 15.5 -2.2 0.43 3200 0.18 300 1.20 407.0 3.65 10.5 -1.8 0.68 2800 1.20 200 407.0 3.65 10.5 -1.8 0.68 2800 1.20 200 407.0 5.35 16.0 -3.2 0.42 2600 0.18 200 407.0 5.35 16.0 -3.2 0.42 2600 0.18 200 407.0 3.65 15.5 -3.0 1.11 4500 0.76 35.5 15.5 -3.0 1.11 4500 0.18 200 35.5 15.5 15.5 -3.0 1.11 4500 0.76 35.5 15.5 15.5 -3.0 1.11 4500 0.76 35.5 15.5 15.5 15.5 11.1 4500 0.76 35.3 372.1 5.34 8.5 4.6 3.13 0 2.31 0 2.31 2.22.3 1.4 2.3 3.3 10.0 2.31 0 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2. | 7.00 | 341.7 | ֓֡֡֡֞֜֞֡֡֡֡֡֡֡֡֡֡ | 15.8 | -1.2 | 8.4J | 200 | 9.79 | 200 | | | 353.4 5.95 14.7 -0.5 3.88 2400 3.21 180 351.1 3.95 10.0 -0.6 4.03 4000 3.15 300 408.5 5.56 15.5 -2.2 0.43 3200 0.18 300 399.4 5.56 15.5 -2.2 0.33 1400 0.18 300 407.0 3.65 15.5 -2.2 0.33 1400 0.18 300 407.0 3.65 16.0 -3.2 0.42 2600 1.20 200 407.6 5.35 16.0 -3.2 0.42 2600 0.18 200 407.6 5.35 16.0 -3.2 0.42 2600 0.18 200 407.1 5.65 15.5 -3.0 1.11 4500 0.76 350 Trim = 1.0 deg, Displacement = 2160 lbs, Water Density = 1.967, Kinematic Viscosity 37.5 0.15 1.5 1.4 2.3 3.32 0 2.31 37.2 5.15 8.7 3.8 10.8 160 10.06 10.06 1.20 26.03 16.5 -2.0 8.48 800 7.88 120 26.03 16.5 -2.0 8.48 800 6.72 7.88 302.9 5.70 14.8 -1.1 6.98 100 6.72 7.88 270.9 5.94 16.0 -1.9 9.39 6000 8.64 565 | 5.3 | 342,5 | 6 | 14.7 | -0.5 | 5.94 | 2000 | 5.23 | 00011 | | | 351.1 3.95 10.0 -0.6 4.03 4000 3.15 300 408.5 408.5 5.56 15.5 -2.2 0.43 3200 0.18 300 309.4 5.56 15.5 -2.2 0.43 3200 0.18 300 399.4 5.56 15.5 -2.2 0.33 1400 0.18 300 1.21 300 1.21 300 1.20 398.2 2.77 8.6 -2.0 1.20 3500 1.21 300 1.20 200 1.21 300 1.20 403.3 5.65 16.0 -3.2 0.42 2600 0.18 200 1.20 200 1.21 300 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1. | 5.3 | 353,4 | 6 | 14.7 | -0.5 | 3.88 | 2400 | 3,21 | 1800 | | | 408.5 5.56 15.5 -2.2 0.43 3200 0.18 306 399.4 5.56 15.5 -2.2 0.33 1400 0.18 80 399.4 5.56 15.5 -2.2 0.33 1400 0.18 80 407.0 3.65 10.5 -1.8 0.68 2800 1.21 30 407.6 5.35 16.0 -3.2 0.42 2600 0.18 20 403.3 5.65 15.5 -3.0 1.11 4500 0.76 35 Trim = 1.0 deg, Displacement = 2160 lbs, Water Density = 1,967, Kinematic Viscosity 222.3 1.53 1.4 2.3 3.32 0 2.31 37.1 5.34 8.5 4.3 8.56 100 2.31 372.1 5.34 8.5 4.3 8.56 100 2.35 372.2 5.15 8.7 3.8 10.28 160 7.86 126 269.7 | 5°4 | 351,1 | 6 | 10.0 | 9.0- | t.03 | 0004 | 3.15 | 3000 | | | 399.4 5.56 15.5 -2.2 0.33 1400 0.18 80 398.2 2.77 8.6 -2.0 1.20 3500 1.21 300 407.0 3.65 10.5 -1.8 0.68 2800 1.20 200 407.6 5.35 16.0 -3.2 0.42 2600 0.18 200 407.6 5.35 16.0 -3.2 0.42 2600 0.76 350 Trim = 1.0 deg, Displacement = 2160 lbs, Water Density = 1.967, Kinematic Viscosity 37.5 0.15 0 0.4 3.13 0 2.31 37.5 0.15 4.6 3.13 0 2.31 372.2 3.8 10.28 10.0 7.96 11 372.2 5.15 8.7 3.8 10.28 160 10.06 10.06 372.2 5.0 14.8 -1.1 6.98 100 6.72 226.7 6.03 16.5 -2.0 8.48 800 7.88 120 226.9 5.70 14.8 -1.1 6.98 100 6.72 270.9 5.94 16.0 -1.9 9.39 6000 8.64 560 | 0.1 | 408.5 | 5 | 15.5 | -2.2 | 0 . 43 | 3200 | 0.18 | 3000 | | | 398.2 2.77 8.6 -2.0 1.20 3500 1.21 300 407.0 3.65 10.5 -1.8 0.68 2800 1.20 200 200 407.0 5.35 16.0 -3.2 0.42 2600 0.18 200 200 403.3 5.65 15.5 -3.0 1.11 4500 0.76 350 350 350 350 350 350 350 350 350 350 | 0.1 | 399°4 | .5 | 15.5 | -2.2 | 0.33 | 1400 | 0.18 | 800 | | | 407.0 3.65 10.5 -1.8 0.68 2800 1.20 200 407.6 5.35 16.0 -3.2 0.42 2600 0.18 200 Trim = 1.0 deg, Displacement = 2160 lbs, Water Density = 1.967, Kinematic Viscosity 37.5 0.15 0 4.50 0.76 3.51 37.5 0.15 0 4.6 3.13 0 2.31 390.3 4.22 3.5 4.6 3.13 0 2.32 372.1 5.34 8.5 4.3 8.56 100 7.96 11 372.2 5.34 8.5 4.3 8.56 100 7.96 11 269.7 6.03 16.5 -2.0 8.48 800 7.88 120 302.9 5.70 14.8 -1.1 6.98 100 6.72 7 270.9 5.94 16.0 -1.9 9.39 6000 6.72 56.72 | 0.1 | 398.2 | | 8.6 | -2.0 | 1.20 | 3500 | 1,21 | 3000 | | | 407.6 5.35 16.0 -3.2 0.42 2600 0.18 200 403.3 5.65 15.5 -3.0 1.11 4500 0.18 200 Trim = 1.0 deg, Displacement = 2160 lbs, Water Density = 1.967, Kinematic Viscosity 37.5 0.15 0 0.4 3.13 0 2.31 222.3 1.53 1.4 2.3 3.32 0 2.31 390.3 4.22 3.5 4.6 3.13 0 2.31 372.1 5.34 8.5 4.3 8.56 100 7.96 14 372.2 5.15 8.7 3.8 10.28 160 7.96 14 269.7 6.03 16.5 -2.0 8.48 800 7.88 120 302.9 5.70 14.8 -1.1 6.98 100 6.72 7 270.9 5.94 16.0 -1.9 9.39 6000 8.64 56.3 | 0.3 | 407.0 | 9. | 10.5 | -1.8 | 0.68 | 2800 | 1.20 | 2000 | | | 403.3 5.65 15.5 -3.0 1.11 4500 0.76 350 Trim = 1.0 deg, Displacement = 2160 lbs, Water Density = 1.967, Kinematic Viscosity 37.5 0.15 0 0 2.31 222.3 1.53 1.4 2.3 3.32 0 2.31 390.3 4.22 3.5 4.6 3.13 0 2.32 372.1 5.34 8.5 4.6 3.13 0 2.32 372.2 3.4 8.5 100 7.96 11 372.2 5.35 8.7 3.8 10.28 160 7.88 120 269.7 5.70 14.8 -1.1 6.98 100 6.72 7 302.9 5.94 16.0 -1.9 9.39 6000 8.64 56.72 | 3.0 | 407.6 | ٣, | 16.0 | -3.2 | 0.42 | 2600 | 0.18 | 2000 | | | Trim = 1.0 deg, Displacement = 2160 lbs, Water Density = 1.967, Kinematic Viscosity 37.5 0.15 0 0.4 3.13 0 2.31 222.3 1.4 2.3 3.32 0 2.32 390.3 4.22 3.5 4.6 3.13 0 2.32 372.1 5.34 8.5 4.3 8.56 100 7.96 11 372.2 5.15 8.7 3.8 10.28 160 10.06 11 302.9 5.70 14.8 -1.1 6.98 100 6.72 7 270.9 5.94 16.0 -1.9 9.39 6000 8.64 560 | 3.1 | m | • 9 | 15.5 | -3.0 | 1.11 | H200 | 0.76 | 3500 | | | 5.6 37.5 0.15 0 0.4 3.13 0 2.31 0.5 222.3 1.53 1.4 2.3 3.32 0 2.32 5.2 390.3 4.22 3.5 4.6 3.13 0 2.32 5.6 372.1 5.34 8.5 4.6 3.13 0 2.32 5.9 372.1 5.34 8.5 4.3 8.56 100 7.96 5.9 372.2 5.15 8.7 3.8 10.28 160 10.06 9.9 302.9 5.70 14.8 -1.1 6.98 100 6.72 0.2 270.9 5.94 16.0 -1.9 9.39 6000 8.64 | | 1 = | Displa | 11 | 4 | Water Density | 1,967 | Kinematic Vi | scosity = 1,275 | 2 | | 0.5 222.3 1.53 1.4 2.3 3.32 0 3.48 5.2 390.3 4.22 3.5 4.6 3.13 0 2.32 5.2 372.1 5.34 8.5 4.3 8.56 100 7.96 5.9 372.2 5.15 8.7 3.8 10.28 160 10.06 9.9 302.9 5.70 14.8 -1.1 6.98 100 6.72 0.2 270.9 5.94 16.0 -1.9 9.39 6000 8.64 | • | 7 | r | ٥ | h•0 | 3,13 | 0 | 2.31 | 0 | | | 5.2 390.3 4.22 3.5 4.6 3.13 0 2.32 5.6 372.1 5.34 8.5 4.3 8.56 100 7.96 5.9 372.2 5.15 8.7 3.8 10.28 160 10.06 9.9 269.7 6.03 16.5 -2.0 8.48 800 7.88 9.9 302.9 5.70 14.8 -1.1 6.98 100 6.72 0.2 270.9 5.94 16.0 -1.9 9.39 6000 8.64 | 0 | 22. | | J. t | 2,3 | 3.32 | 0 | 84.5 | 0 | | | 5.6 372.1 5.34 8.5 4.3 8.56 100 7.96 5.9 372.2 5.15 8.7 3.8 10.28 16.0 10.06 9.9 269.7 6.03 16.5 -2.0 8.48 800 7.88 9.9 302.9 5.70 14.8 -1.1 6.98 100 6.72 0.2 270.9 5.94 16.0 -1.9 9.39 6000 8.64 | 5 | 90 | 7 | 3,5 | 9 * † | 3.13 | 0 | 2.32 | 0 | | | 5.9 372.2 5.15 8.7 3.8 10.28 16.0 10.06 9.9 269.7 6.03 16.5 -2.0 8.48 800 7.88 9.9 302.9 5.70 14.8 -1.1 6.98 100 6.72 0.2 270.9 5.94 16.0 -1.9 9.39 6000 8.64 | Ŋ | 72. | m | 8.5 | t•3 | 8.56 | 100 | 7.96 | 140 | | | 9.9 269.7 6.03 16.5 -2.0 8.48 800 7.88
9.9 302.9 5.70 14.8 -1.1 6.98 100 6.72
0.2 270.9 5.94 16.0 -1.9 9.39 6000 8.64 | 5 | 72. | ٦. | 8.7 | 3.8 | 10.28 | 160 | 10.06 | 3 1 | | | 9.9 302.9 5.70 14.8 -1.1 6.98 100 6.72
0.2 270.9 5.94 16.0 -1.9 9.39 6000 8.64 | 6 | 69 | 0 | 16.5 | -2.0 | 8-1-8 | 800 | 7.88 | 1200 | | | 0.2 270.9 5.94 16.0 -1.9 9.39 6000 8.64 | 6 | 02. | | 14.8 | -1.1 | 6.98 | 100 | 6.72 | 70 | | | | 0 | 70. | 6 | 1.6.0 | 1.9 | • | 0009 | ±9.8 | 5630 | | TABLE 1 - Continued | y,
rd | 374 | |--------------------------------------|---| | Air
Velocity,
Starboard
fpm | ٩ | | Pressure,
Starboard
ir. water | 8.14 3400 0.76 1200 2.96 3000 3.80 4000 0.94 1800 0.27 2000 0.27 2000 0.27 2000 0.27 2000 0.3.90 3.90 3500 0.3.90 3.90 2800 0.3.91 1000 0.3.92 600 0.3.92 600 0.3.93 11000 0.3.95 11000 0.3.95 2000 | | Air
Velocity,
Port
fpm | 3000
1500
3500
2000
2400
3000
2000
2000
1200
1200
1200
1200
2000
2000
2000
3000 | | Pressure,
Port
in, water | 16.5 -1.8 9.04
15.0 -0.8 1.10
15.1 -0.7 4.65
15.1 -0.7 1.28
15.0 -0.7 1.28
17.5 -2.7 0.35
17.5 -2.7 0.35
16.1 -3.5 0.38
MODEL 4985, LENGTH/BEAM RATIO
-0.52 0.36 0
-0.72 0.73 0
9.59 -3.20 4.00
6.90 3.63
3.70 -0.11 0
7.19 -1.82 3.72
3.69 -2.86 3.78
8.59 -2.86 3.78
7.63 -2.48 3.92
6.71 -1.92 3.89
6.71 -1.92 3.83
9.34 -3.33 4.00
9.34 -3.33 4.00 | | Stern
Drop
in. |
-1.8
-0.8
-0.8
-0.7
-0.7
-2.7
-3.5
1985, LENGT
783 1bs, W
0.73
-3.20
-1.35
-1.35
-2.48
-1.92
-1.92
-1.92 | | Bow
Rise
in. | 16.5
15.0
15.0
15.0
15.0
17.5
16.1
MODEL 49
16.1
-0.52
-0.72
9.59
6.90
3.70
7.19
3.69
8.59
6.31
7.63
6.71 | | δτ
deg | 6.15
5.95
6.01
6.01
6.01
6.01
6.19
5.30
0.23
0.23
0.23
1.73
2.25
1.13
2.62
2.92
2.92
2.92 | | Resistance
lbs | 274.8
373.8
363.8
344.9
381.0
378.1
406.4
418.9
75.6
46.4
15.8
75.6
46.4
177.8
59.4
177.8
54.8
64.4
76.7
49.1 | | Speed | 20.2
25.1
25.1
25.1
25.3
30.5
33.5
33.5
10.0
10.0
15.1
15.1
15.2
20.1
20.1
20.2
20.2 | TABLE 1 - Continued | Air
Velocity,
Starboard
fpm | 4500
2500
5800
5800
2500
2500
1000
1000
2200
1100
2200
22 | |--------------------------------------|---| | Pressure,
Starboard
in. water | 3.60
3.48
3.48
3.22
2.62
Xinematic Viscosity
0.3.02
3.02
3.02
3.02
3.02
3.03
3.13
3.13
3.13
3.13
3.13
3.13
3.13 | | Air
Velocity,
Port
fpm | 8000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000 | | Pressure,
Port
in, water | 3.78 3.63 3.83 3.48 2.90 2.90 3.17 3.18 3.18 3.53 3.53 3.55 3.55 3.55 3.55 | | Stern
Drop
in. | 10.36
-2.384
-2.22
-2.88
-3.24
-3.24
-1.30
-1.30
-1.30
-3.35
-3.35
-3.35
-3.35
-3.25 | | Bow
Rise
in. |
10.08
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00 | | δτ
deg | 3.52
1.82
3.08
3.42
2.84
1.72
1.72
1.54
1.54
3.09
3.09
2.99
2.99 | | Resistance
lbs | 66.1
363.8
123.8
107.9
107.9
178.2
20.7
20.7
20.7
20.7
20.7
20.7
44.7
44.7
46.1
46.1
46.1
48.8
48.8
48.8
48.8
49.4
49.6
50.0 | | Speed | 25.2
29.7
29.9
34.8
34.8
34.9
34.9
10.0
10.0
10.0
15.1
15.1
15.1
15.1
15.1 | TABLE 1 - Continued | Speed Resistance
fps lbs
25.0 139.2
25.1 70.0
25.1 71.1
25.1 68.8
25.2 250.2
25.2 74.1 | ice Sr
deg | Bow | S+0 | Presentine | × . | Pressure, | Air | |---|---------------|--------------|-------------|-------------------|-------------------|------------------------|------------------------| | 0 139
1 70
1 71
1 71
2 250
2 250
2 74 | | Rise
in. | Drop
in. | Port
in. water | Velocity,
Port | Starboard
in. water | Velocity,
Starboard | | 0 139
1 70
1 71
1 68
2 250
2 250 | | | | | fpm | | fpm | | 1 70
1 71
1 68
2 250
2 74
0 88 | | 6.73 | -1,53 | • | 1200 | , | 800 | | 1 71.
1 68.
2 250.
2 74. | £. | 10.06 | -3.11 | • | 0009 | • | 2000 | | .1 68
.2 250
.2 74
.0 88 | ω, | | -3.04 | 3.48 | 2500 | 2.72 | 2000 | | .2 250.
.2 74.
.0 88. | 3,42 | ት6 •6 | -2.90 | 3.32 | 2000 | | 000+ | | .2 74.
.0 88. | = | 3.37 | -0.33 | 0 | 0 | 0 | 0 | | .0 88. | ₹. | 9.59 | -2.49 | 3.37 | 1.500 | 2,70 | 1200 | | | ς, | 10.02 | -3.18 | • | 0009 | 2,66 | 0009 | | *10 O* | ~ | 9.71 | -3.11 | 3.42 | 3800 | 2.54 | 3500 | | .4 113. | 6 | 94.6 | -3,43 | • | 2500 | 2.88 | 2000 | | .6 113. | ۲. | 6.67 | -3.25 | | 6900 | 2.84 | 5500 | | .8 118. | 6. | 9.30 | -3.23 | 3.05 | 3500 | 2.66 | 3000 | | .8 108. | 0, | 9.71 | -3,41 | 3 | 000t | 3.12 | 3000 | | .9 95. | 4 | 9.55 | -3.03 | æ, | 1500 | 3,26 | 1000 | | .9 228. | 0. | 7.31 | 1 | Ε, | 800 | 04.4 | 200 | | .1 93. | - | 9.58 | 0 | E. | 2500 | 2.80 | 2000 | | - I | חי ניים יון | 783 | ر
د
د | Water Deseits | = 1 970 Xfr | Xinematic Viscosity | sitv = 1.373 | | 7 | מבאי הדפהדמה | | 1001 | | 407Cex | | | | .2 17. | 0 | -0.19 | 0.28 | 0 | 0 | 0 | a | | 0.0 | ~ | 0.76 | • | Ö | 0 | 0 | 0 | | 5.0 95. | 7 | 4.01 | | 0 | 0 | 0 | 0 | | 5.0 73 | 3.22 | 9.34 | -2.73 | • | 0004 | 1,80 | 3000 | | 5,1 74. | 4 | 8,83 | • | 2 | 2000 | • | 1.600 | | 5.1 75. | 7 | 8.58 | • | 2.24 | 1000 | 1.82 | 1000 | | 5,1 76. | ۳, | 8.37 | • | • | 200 | • | 900 | | 1 1.28. | 5 | 4.62 | • | 0 | 0 | 0 | 0 | TABLE 1 - Continued | Air
Velocity,
Starboard
fpm | 2200
1200
1200
1500
1000
1000
3000
1000
800
800
800
1500
1200
1200
1200
1200
1400 | |--------------------------------------|---| | | 220
120
120
160
100
300
300
300
100
300
120
120
120
120
1400 | | Pressure,
Strrboard
in. water | 2.37
2.16
2.16
2.16
2.13
2.13
3.93
4.44
2.15
2.15
2.15
2.17
Xinematic V
5.77
5.77 | | Air
Velocity,
Port
fpm | 3000
1600
800
2000
1600
1600
1600
1200
4000
2000
4000
2000
1500
3000
5000 | | Pressure,
Port
in, water | 2.38
2.46
2.45
2.41
2.41
2.55
2.46
2.46
2.46
2.46
2.46
2.46
2.46
2.46 | | Stern
Drop
in. | 11 -3.06
12 -3.06
13 -0.05
14 -0.05
17 -3.31
18 -2.75
19 -2.78
10 -3.31
10 -3.38
11 -3.78
11 -3.78
11 -3.78
11 -3.78
12 0.78
13 -2.89
14 -0.05
15 -2.89
16 -0.05
17 -3.35
18 -2.89 | | Bow
Rise
in. | 8.21
7.89
8.68
7.89
7.85
7.66
7.51
8.27
7.71
7.90
8.12
7.91
7.91
7.93
4.54 | | δτ
deg | 2.50
2.58
2.58
2.35
2.35
2.35
2.35
2.22
2.42
2.28
2.18
2.07
1.97
1.92
0.05
0.05
0.35
1.78
2.45
2.87 | | Resistance
1bs | 75.9
81.9
73.5
95.5
97.1
101.9
114.3
116.8
116.8
111.3
111.3
126.9
131.4
17.4
90.9
169.3
74.3
209.4 | | Speed | 20.1
20.1
20.1
20.1
25.2
25.2
25.2
29.9
34.7
34.7
34.8
34.8
5.2
10.1
15.2
20.0 | TABLE 1 - Continued | Air
Velocity,
Starboard
fpm | 1800
3000
500
5000
5000
5000
1000
1000
1200
2500
25 | |--------------------------------------
--| | Pressure,
Starboard
in, water | 5.86
5.86
9.88
5.16
1.72
1.62
1.62
1.62
1.63
1.64
1.58
1.64
1.64
1.64
1.64
1.64
1.64
1.64
1.64
1.64
1.64
1.64
1.64
1.64
1.64
1.65
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.66 | | Air
Velocity,
Port
fpm | 2500
3500
200
6000
6000
1100
1100
1000
1200
120 | | Pressure,
Port
in. water | 6.02
6.15
10.48
5.04
4.75
0 4.75
1.13
1.29
1.29
1.29
1.29
1.40
1.51
1.46
1.55 | | Stern
Drop
in. | -2.46
-2.90
-0.42
-0.19
-2.99
-2.99
-1.44
-0.35
-1.19
-1.19
-1.51
-1.64
-1.64
-1.64
-1.64
-1.64
-1.64
-1.64
-1.64
-1.85 | | Bow
Rise
in. | 7.56
8.01
4.48
9.80
10.19
10.19
-0.60
6.70
6.70
6.75
5.25
5.25
5.25
5.25
5.25
5.26
7.61
9.43
10.04
9.46
9.46 | | δτ
deg | 2.48
1.97
1.97
1.87
3.32
3.83
0.55
2.12
2.12
2.12
2.12
2.24
2.24
3.23
3.23
3.23
3.05
3.05 | | Resistance
lbs | 76.2
68.5
278.1
82.4
301.1
103.4
103.4
63.3
73.1
61.3
66.7
65.8
106.6
61.4
47.4
41.0
41.0
41.0
41.0 | | Speed
fps | 20.1
25.1
25.1
25.2
30.0
30.0
10.0
10.0
10.2
10.2
10.2
10.3
15.3
15.3
20.1
20.1 | TABLE 1 · Continued | Speed
fps | Resistance
lbs | δτ
deg | Bow
Rise
in. | Stern
Drop
in. | Pressure,
Port
in, water | Air
Velocity,
Port
fpm | Pressure,
Starboerd
in. water | Air
Velocity,
Starboard
fpm | |--------------|-------------------|-----------|--------------------|----------------------|--------------------------------|---------------------------------|-------------------------------------|--------------------------------------| | Ι, | | • | i i | ľ | 30 | 0009 | 11 76 | 11 500 | | • | • | • | TO 33 | • | ָה
ה
ה | 000 | • | | | ö | | • | /h•h | -T.20 | > | O : | 5 | | | c | _ | • | 10.23 | -3,25 | n.74 | 2500 | 4.68 | 0000 | | 0 | | | 6.69 | -3.04 | 4.35 | 1800 | t, 43 | 1500 | | C | | • | • | | 64.4 | 2800 | 4. 41 | 2200 | | 0 | | | 88.5 | -3.12 | 4.39 | 2500 | †† * † | 1900 | | 7 | | • | 5,13 | ~0.85 | 0 | 0 | 0 | 0 | | 'n | | • | 10.55 | | 4.36 | 2600 | 4°05 | 2000 | | 2 | | | 10,50 | r | 4°38 | 3000 | 4.16 | 2500 | | 7 | | • | 7,48 | -1.38 | 3.88 | 1100 | 3.80 | 1000 | | ۲.J | | • | 10.40 | - 6 | 4.35 | 3400 | 4.10 | 3000 | | S. | _ | | 8.53 | -2.16 | 3.49 | 1800 | 3.68 | 1500 | | Ŋ | | • | 10.53 | -2.93 | 84.4 | 0004 | 4.59 | 3000 | | 0 | | • | 8.52 | -2,42 | 3.64 | 2100 | 3,38 | 2000 | | 30.0 | 117.5 | 2.75 | 8.67 | | й . 24 | 1800 | 3.92 | 1200 | | 0 | • | • | 60.6 | -2.50 | 4.30 | 2800 | 3.88 | 2000 | | ő | _ | | 9.03 | -2.94 | 4.23 | 500 C | 3.88 | 0001 | | 0 | _ | | 9.13 | • | 4,30 | 4000
4000 | 4.07 | 3000 | | 0 | _ | | 10.19 | -2.95 | 4.22 | 2500 | t•00 | 1800 | | 0 | _ | • | • | • | 0 | 0 | 0 | 0 | | ± | | • | 6 8° 6 | • | 3.81 | 3000 | 4.02 | 2500 | | 5 | _ | | | • | 4.00 | 27 50 | 3.82 | 2500 | | 5. | _ | | 10.35 | -3,32 | 4,13 | 2200 | 3.86 | 1800 | | 5. | | • | | • | 4.41 | 0009 | 3.81 | # 200 | | | 137.8 | | • | -3,32 | | 3000 | 3.61 | 2100 | TABLE 1 - Continued | Air
Velocity,
Starboard
~om | sity = 1.280 | 0 | 1000 | 1000 | 200 | 0 | 2000 | 150 | 1200 | 200 | 0 | 1800 | 3000 | 2400 | 3500 | 000t | 3500 | 2000 | 1500 | 2500 | 2500 | 2000 | 0 | 1200 | 000h | |--------------------------------------|---------------------|--------|------|-----------------|------|------|-------|------|------|------|------|------|--------------------|------|------|------|------|------|------|------------------|------|------|------|------|-------| | Pressure,
Starboard
in. water | Kinematic Viscosity | 0 | 2.94 | 2.88 | 2.78 | 0 | 3.04 | 2.80 | | 1.85 | 0 | 2.80 | 2,59 | 2,66 | 2.68 | 3.08 | 3.07 | • | • | 2,99 | • | | 0 | 3.08 | 3.03 | | Air
Velocity,
Port
fpm | = 1.971, | 0 | 200 | 00 1 | 100 | 0 | 2800 | 150 | 1600 | 250 | 0 | 1700 | 000 1 1 | 2800 | 2000 | 5500 | 2000 | 2500 | 1500 | 3500 | 3000 | 2800 | 0 | 1200 | 0009 | | Pressure,
Port
in. water | Water Density | 0 | 3,13 | 3.07 | 2.92 | 0 | 3.28 | 2.98 | 3.15 | 2.0₩ | 0 | 3.62 | • | 3.56 | 3.44 | 3,29 | 3,32 | 3,59 | 3.60 | 3.52 | 3,53 | 3.46 | 0 | 3,50 | • | | Stern
Drop
in. | 1bs, | 0.27 | | -0.53 | | | -1.13 | | | | | | -1.70 | | | | | | | | | | | | -3.56 | | Bow
Rise
in. | ert = 1000 | 1th 0- | 3,93 | 4.03 | 3.20 | 94.0 | 6.39 | 5.83 | 7.27 | 5.44 | 4.59 | 8.62 | 8.17 | 8.73 | 8.81 | 9°34 | 9.25 | 8.77 | 9.07 | 8.7 ⁴ | 9.12 | 9.02 | 5.03 | 8.95 |
9.21 | | δτ
deg | Displacement | • | 1.62 | | • | | • | | • | | | • | • | • | • | | • | | • | • | • | • | • | • | • | | Resistance
lbs | Trim = 1.0 deg. | | 22.8 | | | | | | | | | | | | | | | • | • | | | | | • | | | Speed
fps | Static 1 | 5.0 | 5.0 | ້ຳ | 5,3 | 10,1 | 10.1 | 10.2 | 10,2 | 15.0 | 15,1 | 15,1 | 15,1 | 15.1 | 15.2 | 20.0 | 20.0 | 20.0 | 20.0 | 20.1 | 20.1 | 20.1 | 20.2 | 20.2 | 25.0 | TABLE 1 - Continued | | R. F. F. B. | Drop
in. | υ <u>ξι</u> + μ | Velocity,
Port
frm | Starboard
in. water | Velocity,
Starboard
fpm | |-----------|-------------|--------------|----------------------|--------------------------|------------------------|-------------------------------| | 2 2 | 58 8.52 | -3.23 | 3, e
2, t
3, t | 500 | 3.18 | 100 | | • | ocí d | • | • | 001 | 3.37 | 1000 | | • 1 | ກໍຜ | | • • | 4500
2700 | 3,24 | 2200 | | | | | • | 0 | 0 | 0 | | | ່ວາ | -3.83 | 3.50 | 2800 | 3.02 | 000 1 | | • | œ | • | ≠. | 1200 | 3.65 | 2500 | | • | φ. | • | | 0 | 0 | 0 | | • | œ | • | • | 3800 | 3.03 | 3000 | | | œ | | 3,50 | 2800 | 2.93 | 2200 | | • | ထံ | • | | 000 | 2.80 | 3500 | | • | ထ | • | 3.44 | 3300 | 2.78 | 2500 | | | 6 | • | 3,59 | 4300 | 2.93 | 3500 | | | 6 | • | • | 0009 | 2.89 | H200 | | | | -3.85 | 3,12 | 1200 | 2.69 | 1800 | | | 6 | 60°h- | • | 4500 | 3.05 | 000+ | | • | œ | | • | 1000 | 68 | 1000 | | Displacen | ent = | 1000 lbs, We | Water Density | " 1.969, Ki | Kinematic Viscosity | sity = 1.277 | | 1 | • | • | 0 | 0 | 0 | 0 | | • | ri | | 0 | 0 | 0 | 0 | | • | ± | | 0 | 0 | 0 | 0 | | 1.5 | 29"5 46 | -1.70 | | 0 | | 0 | | • | 7. | • | 2.56 | 0009 | 2,29 | 000 | TABLE 1 - Continued | y,
rd | 31 4 | | |--------------------------------------|---|-------------------------| | Air
Velocity,
Starboard
fpm | 22000
15000
22000
22000
32000
4000
4000
4000
0 | 2000 | | Pressure,
Starboard
în. water | 2.33
2.17
2.11
1.63
1.70
1.25
2.08
1.79
1.11
1.45
0
0
0
0 | 3*30
0
0 | | Air
Velocity,
Port
fpm | 4000
1500
1500
2400
1500
1500
5800
5800
5800
5800
1,970 | 0000 | | Pressure,
Port
in. water | 2.63
2.58
2.59
2.02
1.82
1.82
2.04
2.04
1.89
0
0
0 | 3°86
0
0 | | Stern
Drop
in. | -2.54
-2.58
-2.50
-2.36
-2.95
-2.95
-3.11
-1.84
-3.62
-3.39
-3.39 | 0.05
-0.76
-2.30 | | Bow
Rise
in. | 7.02
6.90
6.72
8.31
7.59
7.61
6.76
8.37
5.63
8.20
6.41
7.09
nt = 1457 | 5.85
7.65
6.57 | | δτ
deg | 2.19
2.10
2.06
1.88
2.47
2.47
2.05
1.83
1.83
1.74
1.74
1.74 | | | Resistance
1.bs | 1 | 243.4
183.3
263.0 | | Speed
fps | | 15.1
15.1
20.1 | TABLE 1 - Continued | | <u>116</u> | |--------------------------------------|---| | Air
Velocity,
Starboard
fpm | 500
3000
3000
3500
2000
500
500
1000
4000
4500 | | | Viscosi | | Pressure,
Starboard
in, water | nematic
5.02
5.45
5.49
5.34
4.94
5.17
5.17
5.35 | | , Air
Velocity,
r Port
fpm | 1,970, Ki
1800
3500
4500
2500
500
2000
1800
3500
6000 | | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | Pressure,
Fort
in. water | Mater Density = 1.970, Kinematic Viscosity = 1.314 5.09 1800 5.02 600 5.39 3500 5.45 3000 6.51 4500 5.49 3500 6.07 2500 5.34 2000 5.02 500 4.94 500 5.52 2000 5.17 1800 5.28 3500 5.17 1000 5.38 5500 5.35 4000 5.37 6000 4.11 4500 | | Stern
Drop
in. | 10 -1.75
10 -1.75
19 -3.25
67 -4.01
63 -3.57
23 -2.95
23 -2.95
92 -3.57
82 -3.55
94 -3.51
12 -4.45 | | Bow
Rise
in. | ment = 145
10.10
12.49
10.93
10.93
10.92
10.96
11.12 | | δτ
deg | | | Resistance
lbs | Static Trim = 1.0 deg, Displace 15.1 165.2 4.05 15.2 155.3 4.50 20.0 133.8 3.24 25.2 177.1 3.54 25.2 161.5 3.54 25.2 168.6 3.64 30.0 244.5 3.62 34.9 235.9 3.24 | | Speed | Static Ir
15.1
15.2
20.0
25.2
25.2
25.2
25.2
25.3
30.0 | ## REFERENCES 1. Olson, R. E. and Brownell, W. F., "Facilities and Research Capabilities, High Speed Phenomena Division, David Taylor Model Basin, Langley Field, Va.," David Taylor Model Basin Report 1809 (Apr 1964). BLANK UNCLASSIFIED S/N 0101-807-6601 | Security Classification | | 11- | | | | |--|--|---------------|-------------------|--|--| | DOCUMENT CONTROL DATA - R & D | | | | | | | (Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified) 1. ORIGINATING ACTIVITY (Corporate author) 22. REPORT SECURITY CLASSIFICATION | | | | | | | 1. ORIGINATING ACTIVITY (Corporate author) | | | | | | | Naval Ship Research and Development Cer | iter | UNCLASS | TLTEN | | | | | | 29. GROUP | | | | | A REPORT TITLE | | L | | | | | | | | | | | | DECTOTANCE TECTO OF A CVCTCMATTE CEDITO | OF PARTA | IN ATR SI | IPPOPTED VEHTCLES | | | | PESISTANCE TESTS OF A SYSTEMATIC SERIES OF PARTIALLY AIR SUPPORTED VEHICLES | | | | | | | 4. DESCRIPTIVE NOTES (Type of report and inclusive dates) | | | | | | | | | | | | | | 5. AUTHOPIS) (First name, middle initial, last name) | 5. AUTHOPISI (First name, middle initial, last name) | | | | | | | | | | | | | Lawrence Benen and Joel B. Bloom | | | | | | | | | | | | | | S. REPORT DATE | 78. TOTAL NO. 01 | FPAGES | 78. NO. OF REFS | | | | January 1968 | 71 | | <u> </u> | | | | SE CONTRACT OR GRANT NO. | te. ORIGINATOR'S | REPORT NUMB | ER(5) | | | | 6. PROJECT NO. | | | | | | | errovent i nu. | 2512 | 2512 | | | | | c. | 9b. OTHER REPORT NO(5) (Any other numbers that may be assigned | | | | | | | thie report) | | | | | | ١. | | | | | | | 10. DISTRIBUTION STATEMENT This document is subject | t to special | export conf | rols and each | | | | transmittal to foreign go | | | | | | | made only with prior appr | | | | | | | and Development Center. | | | | | | | 11. SUPPLEMENTARY NOTES | 12. SPONSORING | HILITARY ACTI | VITY | | | | | Bureau of Ships (now Naval Ship | | | | | | | Systems Command) | | | | | | | | | | | | | 13. ABSTRACT | | | | | | | Four partial air support (Hydrokeel) vehicles of different | | | | | | | length-beam ratio have been tested for resistance at a number of | | | | | | | loads, speeds, and trim conditions. | All data ar | e present | ed in | | | | nondimensional form for use in compar | ing hull for | rts. | | | | | | | | | | | | The tests showed that the use of an air support system | | | | | | | significantly improves the performance of this configuration. | | | | | | | Lift-drag ratios greater than ten were obtained for a wide range | | | | | | | ot conditions. Wetted boundaries were not discernible, nor could planing lift be deduced, due to the complexity of the flow. | | | | | | | brantik titt be deduced, due to the c | Dubrexity O | r the 110 | | | | | | | | L. | DD FORM 1473 (PAGE 1) | | | 1007777 | | | | LID I NOV 45 14/3 | | UNCL | ASSIFTED | | | Security Classification ## UNCLASSIFIED Security Classification LINK A L184 . **KEY WORDS** ROLE WT ROLE NT MOLE Ground Effect Machines Hydrokeel Captured Air Bubble Surface Effect Ships Air-Cushioned Vehicle Length-Beam Ratio Air Support Planing Lift-Resistance Ratio Air Lubrication . DD 1904.1473 (BACK) GP 0 938-073 (PAGE- 2) Security Classification